Nonexistence of the box dimension for dynamically invariant sets

IF 1.8 1区 数学 Q1 MATHEMATICS
Natalia Jurga
{"title":"Nonexistence of the box dimension for dynamically invariant sets","authors":"Natalia Jurga","doi":"10.2140/apde.2023.16.2385","DOIUrl":null,"url":null,"abstract":"<p>One of the key challenges in the dimension theory of smooth dynamical systems lies in establishing whether or not the Hausdorff, lower and upper box dimensions coincide for invariant sets. For sets invariant under conformal dynamics, these three dimensions always coincide. On the other hand, considerable attention has been given to examples of sets invariant under nonconformal dynamics whose Hausdorff and box dimensions do not coincide. These constructions exploit the fact that the Hausdorff and box dimensions quantify size in fundamentally different ways, the former in terms of covers by sets of varying diameters and the latter in terms of covers by sets of fixed diameters. In this article we construct the first example of a dynamically invariant set with distinct lower and upper box dimensions. Heuristically, this says that if size is quantified in terms of covers by sets of equal diameters, a dynamically invariant set can appear bigger when viewed at certain resolutions than at others. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"5 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.2385","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the key challenges in the dimension theory of smooth dynamical systems lies in establishing whether or not the Hausdorff, lower and upper box dimensions coincide for invariant sets. For sets invariant under conformal dynamics, these three dimensions always coincide. On the other hand, considerable attention has been given to examples of sets invariant under nonconformal dynamics whose Hausdorff and box dimensions do not coincide. These constructions exploit the fact that the Hausdorff and box dimensions quantify size in fundamentally different ways, the former in terms of covers by sets of varying diameters and the latter in terms of covers by sets of fixed diameters. In this article we construct the first example of a dynamically invariant set with distinct lower and upper box dimensions. Heuristically, this says that if size is quantified in terms of covers by sets of equal diameters, a dynamically invariant set can appear bigger when viewed at certain resolutions than at others.

动态不变集的盒维不存在
平稳动力学系统维度理论的关键挑战之一在于确定不变集的豪斯多夫维度、下盒维度和上盒维度是否重合。对于共形动力学下的不变集,这三个维度总是重合的。另一方面,在非共形动力学条件下不变集的例子引起了相当大的关注,这些例子的豪斯多夫维度和盒维度并不重合。这些构造利用了这样一个事实,即豪斯多夫维度和盒维度以根本不同的方式量化大小,前者以不同直径的集合覆盖的方式量化大小,后者以固定直径的集合覆盖的方式量化大小。在本文中,我们构建了第一个动态不变集的例子,它具有不同的下盒维和上盒维。从启发式的角度来看,这就是说,如果用直径相等的集合所覆盖的范围来量化大小,动态不变集在某些分辨率下看起来会比其他分辨率下更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信