O. González-Pelayo, S. A. Prats, E. van den Elsen, M. C. Malvar, C. Ritsema, S. Bautista, J. J. Keizer
{"title":"The effects of wildfire frequency on post-fire soil surface water dynamics","authors":"O. González-Pelayo, S. A. Prats, E. van den Elsen, M. C. Malvar, C. Ritsema, S. Bautista, J. J. Keizer","doi":"10.1007/s10342-023-01635-z","DOIUrl":null,"url":null,"abstract":"<p>Increasing wildfire frequency in the Mediterranean Basin could affect future plant-soil–water-dynamics. The capacity of soils to retain water is a key parameter affecting plant post-fire regeneration. Yet, few research has looked at how different soil properties related to water retention is affected by increasing wildfire frequency. This study aimed at understanding the relationship between wildfire frequency, soil–water-related properties and the dynamics of surface water in soils. To this, after a 2012-summer wildfire in Portugal, three sets of three replicate maritime pine stands with contrasted wildfire frequency were selected (0 <i>vs.</i> 1 <i>vs</i>. 4 fires since 1975). At each of the nine study sites, three re-sprouter shrubs and neighbouring bare soil were chosen (54 microsites). There, soil cover, soil–water retention curves and surface (0–5 cm) soil–water-related properties (texture, bulk density, organic matter content, soil moisture, soil surface water repellency) were monitored for one year. Furthermore, records of post-fire soil moisture dynamics were analysed continuously using 72 probes installed at 2.5 and 7.5 cm depth. The hillslopes affected by 1 fire showed higher plant recovery than the 4 fires hillslopes. During the dry season, the threshold for water stress was reached 17 days sooner in the 4 fires hillslopes, and also 10 days sooner on bare microsites. Periods of plant water stress were longer and bare soil patches size bigger. The increase in wildfire frequency promoted high soil organic matter contents but less available water content, stressing the importance of soil organic matter quality characterization in water-related properties.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-023-01635-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing wildfire frequency in the Mediterranean Basin could affect future plant-soil–water-dynamics. The capacity of soils to retain water is a key parameter affecting plant post-fire regeneration. Yet, few research has looked at how different soil properties related to water retention is affected by increasing wildfire frequency. This study aimed at understanding the relationship between wildfire frequency, soil–water-related properties and the dynamics of surface water in soils. To this, after a 2012-summer wildfire in Portugal, three sets of three replicate maritime pine stands with contrasted wildfire frequency were selected (0 vs. 1 vs. 4 fires since 1975). At each of the nine study sites, three re-sprouter shrubs and neighbouring bare soil were chosen (54 microsites). There, soil cover, soil–water retention curves and surface (0–5 cm) soil–water-related properties (texture, bulk density, organic matter content, soil moisture, soil surface water repellency) were monitored for one year. Furthermore, records of post-fire soil moisture dynamics were analysed continuously using 72 probes installed at 2.5 and 7.5 cm depth. The hillslopes affected by 1 fire showed higher plant recovery than the 4 fires hillslopes. During the dry season, the threshold for water stress was reached 17 days sooner in the 4 fires hillslopes, and also 10 days sooner on bare microsites. Periods of plant water stress were longer and bare soil patches size bigger. The increase in wildfire frequency promoted high soil organic matter contents but less available water content, stressing the importance of soil organic matter quality characterization in water-related properties.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.