{"title":"Experimental performance analysis of photovoltaic/thermal hybrid system cooled by forced ventilation","authors":"Lyes Boutina, Abdelkrim Khelifa, Mohamed Lebbi, Fatah Bedaouche, Khaled Touafek, Sofiane Kherrour, Abdelhalim Borni","doi":"10.1002/ep.14328","DOIUrl":null,"url":null,"abstract":"<p>Solar panels' efficiency is highly affected by high-operating temperatures, especially in semi-arid and arid regions. This outdoor experimental study aimed to enhance the energy performance of the photovoltaic module by integrating two fans at the outlet of the thermal/photovoltaic hybrid system to ensure forced ventilation. The work novelty depending on achieving low energy consumption by DC fans, so that there is a proportional relationship between the intensity of solar radiation and the energy produced and consumed. The influence of the reduced temperature, operating temperature, and solar radiation intensity on the energy performance of the photovoltaic/thermal hybrid system was analyzed experimentally. The obtained results showed an improvement in electrical and overall efficiency of the new hybrid system by about 4% and 60%, respectively, compared to the conventional photovoltaic module. On the contrary, a decrease in the temperature of the PV module installed in the hybrid system was measured by about 9°C, compared to the conventional photovoltaic module. In addition to the effectiveness of the new technology air cooling proposed at the lowest consumption cost, the thermal energy generated from the proposed system can be invested in solar drying and building applications.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14328","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solar panels' efficiency is highly affected by high-operating temperatures, especially in semi-arid and arid regions. This outdoor experimental study aimed to enhance the energy performance of the photovoltaic module by integrating two fans at the outlet of the thermal/photovoltaic hybrid system to ensure forced ventilation. The work novelty depending on achieving low energy consumption by DC fans, so that there is a proportional relationship between the intensity of solar radiation and the energy produced and consumed. The influence of the reduced temperature, operating temperature, and solar radiation intensity on the energy performance of the photovoltaic/thermal hybrid system was analyzed experimentally. The obtained results showed an improvement in electrical and overall efficiency of the new hybrid system by about 4% and 60%, respectively, compared to the conventional photovoltaic module. On the contrary, a decrease in the temperature of the PV module installed in the hybrid system was measured by about 9°C, compared to the conventional photovoltaic module. In addition to the effectiveness of the new technology air cooling proposed at the lowest consumption cost, the thermal energy generated from the proposed system can be invested in solar drying and building applications.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.