Geometric analysis of $1+1$ dimensional quasilinear wave equations

IF 0.6 3区 数学 Q3 MATHEMATICS
Leonardo Enrique Abbrescia, Willie Wai Yeung Wong
{"title":"Geometric analysis of $1+1$ dimensional quasilinear wave equations","authors":"Leonardo Enrique Abbrescia, Willie Wai Yeung Wong","doi":"10.4310/mrl.2023.v30.n3.a1","DOIUrl":null,"url":null,"abstract":"We prove global well-posedness of the initial value problem for a class of variational quasilinear wave equations, in one spatial dimension, with initial data that is not necessarily small. Key to our argument is a form of quasilinear null condition (a “nilpotent structure”) that persists for our class of equations even in the large data setting. This in particular allows us to prove global wellposedness for $C^2$ initial data of moderate decrease, provided the data is sufficiently close to that which generates a simple traveling wave. We take here a geometric approach inspired by works in mathematical relativity and recent works on shock formation for fluid systems. First we recast the equations of motion in terms of a dynamical double-null coordinate system; we show that this formulation semilinearizes our system and decouples the wave variables from the null structure equations. After solving for the wave variables in the double-null coordinate system, we next analyze the null structure equations, using the wave variables as input, to show that the dynamical coordinates are $C^1$ regular and covers the entire spacetime.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n3.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove global well-posedness of the initial value problem for a class of variational quasilinear wave equations, in one spatial dimension, with initial data that is not necessarily small. Key to our argument is a form of quasilinear null condition (a “nilpotent structure”) that persists for our class of equations even in the large data setting. This in particular allows us to prove global wellposedness for $C^2$ initial data of moderate decrease, provided the data is sufficiently close to that which generates a simple traveling wave. We take here a geometric approach inspired by works in mathematical relativity and recent works on shock formation for fluid systems. First we recast the equations of motion in terms of a dynamical double-null coordinate system; we show that this formulation semilinearizes our system and decouples the wave variables from the null structure equations. After solving for the wave variables in the double-null coordinate system, we next analyze the null structure equations, using the wave variables as input, to show that the dynamical coordinates are $C^1$ regular and covers the entire spacetime.
1+1$ 维准线性波方程的几何分析
我们证明了一类变分准线性波方程的初值问题在一个空间维度上的全局提出性,其初始数据不一定很小。我们论证的关键是一种准线性零条件("零potent 结构"),即使在大数据环境下,它对我们这一类方程也是持续存在的。只要数据足够接近产生简单行波的数据,我们就能证明中等减小的 $C^2$ 初始数据的全局妥善性。在此,我们受数学相对论和近期流体系统冲击形成研究的启发,采用了一种几何方法。首先,我们用动态双空坐标系来重构运动方程;我们证明,这种表述方式使我们的系统半线性化,并将波变量与空结构方程解耦。在求解了双空坐标系中的波变量之后,我们接下来以波变量为输入,分析了空结构方程,从而证明动力学坐标系是$C^1$正则坐标系,并且覆盖了整个时空。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信