Annihilators of $D$-modules in mixed characteristic

IF 0.6 3区 数学 Q3 MATHEMATICS
Rankeya Datta, Nicholas Switala, Wenliang Zhang
{"title":"Annihilators of $D$-modules in mixed characteristic","authors":"Rankeya Datta, Nicholas Switala, Wenliang Zhang","doi":"10.4310/mrl.2023.v30.n3.a5","DOIUrl":null,"url":null,"abstract":"Let $R$ be a polynomial or formal power series ring with coefficients in a DVR $V$ of mixed characteristic with a uniformizer $\\pi$. We prove that the $R$-module annihilator of any nonzero $\\mathcal{D}(R,V)$-module is either zero or is generated by a power of $\\pi$. In contrast to the equicharacteristic case, nonzero annihilators can occur; we give an example of a top local cohomology module of the ring $\\mathbb{Z}_2 [[x_0, \\dotsc, x_5]]$ that is annihilated by $2$, thereby answering a question of Hochster in the negative. The same example also provides a counterexample to a conjecture of Lyubeznik and Yildirim.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"172 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n3.a5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a polynomial or formal power series ring with coefficients in a DVR $V$ of mixed characteristic with a uniformizer $\pi$. We prove that the $R$-module annihilator of any nonzero $\mathcal{D}(R,V)$-module is either zero or is generated by a power of $\pi$. In contrast to the equicharacteristic case, nonzero annihilators can occur; we give an example of a top local cohomology module of the ring $\mathbb{Z}_2 [[x_0, \dotsc, x_5]]$ that is annihilated by $2$, thereby answering a question of Hochster in the negative. The same example also provides a counterexample to a conjecture of Lyubeznik and Yildirim.
混合特征中 $D$ 模块的湮没器
让 $R$ 是一个多项式或形式幂级数环,其系数在具有均匀化 $\pi$ 的混合特征 DVR $V$ 中。我们证明,任何非零 $\mathcal{D}(R,V)$模块的 $R$ 模块湮没器要么为零,要么由 $\pi$ 的幂生成。我们举了一个例子,说明环 $\mathbb{Z}_2 [[x_0, \dotsc, x_5]]$ 的顶局部同调模块被 2$ 所湮没,从而从反面回答了霍赫斯特的一个问题。同样的例子也为柳贝兹尼克和耶尔德里姆的猜想提供了一个反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信