Safer solid-state lithium metal batteries: Mechanisms and strategies

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2023-12-12 DOI:10.1002/inf2.12512
Shi-Jie Yang, Jiang-Kui Hu, Feng-Ni Jiang, Hong Yuan, Ho Seok Park, Jia-Qi Huang
{"title":"Safer solid-state lithium metal batteries: Mechanisms and strategies","authors":"Shi-Jie Yang,&nbsp;Jiang-Kui Hu,&nbsp;Feng-Ni Jiang,&nbsp;Hong Yuan,&nbsp;Ho Seok Park,&nbsp;Jia-Qi Huang","doi":"10.1002/inf2.12512","DOIUrl":null,"url":null,"abstract":"<p>Solid-state batteries that employ solid-state electrolytes (SSEs) to replace routine liquid electrolytes are considered to be one of the most promising solutions for achieving high-safety lithium metal batteries. SSEs with high mechanical modulus, thermal stability, and non-flammability can not only inhibit the growth of lithium dendrites but also enhance the safety of lithium metal batteries. However, several internal materials/electrodes-related thermal hazards demonstrated by recent works show that solid-state lithium metal batteries (SSLMBs) are not impenetrable. Therefore, understanding the potential thermal hazards of SSLMBs is critical for their more secure and widespread applications. In this contribution, we provide a comprehensive overview of the thermal failure mechanism of SSLMBs from materials to devices. Also, strategies to improve the thermal safety performance of SSLMBs are included from the view of material enhancement, battery design, and external management. Consequently, the future directions are further provided. We hope that this work can shed bright insights into the path of constructing energy storage devices with high energy density and safety.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12512","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12512","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state batteries that employ solid-state electrolytes (SSEs) to replace routine liquid electrolytes are considered to be one of the most promising solutions for achieving high-safety lithium metal batteries. SSEs with high mechanical modulus, thermal stability, and non-flammability can not only inhibit the growth of lithium dendrites but also enhance the safety of lithium metal batteries. However, several internal materials/electrodes-related thermal hazards demonstrated by recent works show that solid-state lithium metal batteries (SSLMBs) are not impenetrable. Therefore, understanding the potential thermal hazards of SSLMBs is critical for their more secure and widespread applications. In this contribution, we provide a comprehensive overview of the thermal failure mechanism of SSLMBs from materials to devices. Also, strategies to improve the thermal safety performance of SSLMBs are included from the view of material enhancement, battery design, and external management. Consequently, the future directions are further provided. We hope that this work can shed bright insights into the path of constructing energy storage devices with high energy density and safety.

Abstract Image

Abstract Image

更安全的固态锂金属电池:机制与策略
采用固态电解质(SSE)替代常规液态电解质的固态电池被认为是实现高安全性锂金属电池的最有前途的解决方案之一。具有高机械模量、热稳定性和不可燃性的固态电解质不仅能抑制锂枝晶的生长,还能提高锂金属电池的安全性。然而,最近的研究表明,固态锂金属电池(SSLMB)的内部材料/电极存在一些热危害。因此,了解固态锂金属电池的潜在热危害对其更安全、更广泛的应用至关重要。在本文中,我们将全面概述 SSLMB 从材料到器件的热失效机制。此外,我们还从材料改进、电池设计和外部管理等方面阐述了提高 SSLMB 热安全性能的策略。因此,我们进一步提出了未来的研究方向。我们希望这项研究能为构建高能量密度和高安全性的储能设备提供一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信