{"title":"Higher semiadditive algebraic K-theory and redshift","authors":"Shay Ben-Moshe, Tomer M. Schlank","doi":"10.1112/s0010437x23007595","DOIUrl":null,"url":null,"abstract":"<p>We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory that takes into account higher semiadditive structure, as enjoyed for example by the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {K}(n)$</span></span></img></span></span>- and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {T}(n)$</span></span></img></span></span>-local categories. We prove that it satisfies a form of the redshift conjecture. Namely, that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$R$</span></span></img></span></span> is a ring spectrum of height <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\leq n$</span></span></img></span></span>, then its semiadditive K-theory is of height <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\leq n+1$</span></span></img></span></span>. Under further hypothesis on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$R$</span></span></img></span></span>, which are satisfied for example by the Lubin–Tate spectrum <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {E}_n$</span></span></img></span></span>, we show that its semiadditive algebraic K-theory is of height exactly <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n+1$</span></span></img></span></span>. Finally, we connect semiadditive K-theory to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {T}(n+1)$</span></span></img></span></span>-localized K-theory, showing that they coincide for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-invertible ring spectrum and for the completed Johnson–Wilson spectrum <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\widehat {\\mathrm {E}(n)}$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007595","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory that takes into account higher semiadditive structure, as enjoyed for example by the $\mathrm {K}(n)$- and $\mathrm {T}(n)$-local categories. We prove that it satisfies a form of the redshift conjecture. Namely, that if $R$ is a ring spectrum of height $\leq n$, then its semiadditive K-theory is of height $\leq n+1$. Under further hypothesis on $R$, which are satisfied for example by the Lubin–Tate spectrum $\mathrm {E}_n$, we show that its semiadditive algebraic K-theory is of height exactly $n+1$. Finally, we connect semiadditive K-theory to $\mathrm {T}(n+1)$-localized K-theory, showing that they coincide for any $p$-invertible ring spectrum and for the completed Johnson–Wilson spectrum $\widehat {\mathrm {E}(n)}$.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.