Higher semiadditive algebraic K-theory and redshift

IF 1.3 1区 数学 Q1 MATHEMATICS
Shay Ben-Moshe, Tomer M. Schlank
{"title":"Higher semiadditive algebraic K-theory and redshift","authors":"Shay Ben-Moshe, Tomer M. Schlank","doi":"10.1112/s0010437x23007595","DOIUrl":null,"url":null,"abstract":"<p>We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory that takes into account higher semiadditive structure, as enjoyed for example by the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {K}(n)$</span></span></img></span></span>- and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {T}(n)$</span></span></img></span></span>-local categories. We prove that it satisfies a form of the redshift conjecture. Namely, that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$R$</span></span></img></span></span> is a ring spectrum of height <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\leq n$</span></span></img></span></span>, then its semiadditive K-theory is of height <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\leq n+1$</span></span></img></span></span>. Under further hypothesis on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$R$</span></span></img></span></span>, which are satisfied for example by the Lubin–Tate spectrum <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {E}_n$</span></span></img></span></span>, we show that its semiadditive algebraic K-theory is of height exactly <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n+1$</span></span></img></span></span>. Finally, we connect semiadditive K-theory to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {T}(n+1)$</span></span></img></span></span>-localized K-theory, showing that they coincide for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-invertible ring spectrum and for the completed Johnson–Wilson spectrum <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231214094411104-0539:S0010437X23007595:S0010437X23007595_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\widehat {\\mathrm {E}(n)}$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007595","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory that takes into account higher semiadditive structure, as enjoyed for example by the Abstract Image$\mathrm {K}(n)$- and Abstract Image$\mathrm {T}(n)$-local categories. We prove that it satisfies a form of the redshift conjecture. Namely, that if Abstract Image$R$ is a ring spectrum of height Abstract Image$\leq n$, then its semiadditive K-theory is of height Abstract Image$\leq n+1$. Under further hypothesis on Abstract Image$R$, which are satisfied for example by the Lubin–Tate spectrum Abstract Image$\mathrm {E}_n$, we show that its semiadditive algebraic K-theory is of height exactly Abstract Image$n+1$. Finally, we connect semiadditive K-theory to Abstract Image$\mathrm {T}(n+1)$-localized K-theory, showing that they coincide for any Abstract Image$p$-invertible ring spectrum and for the completed Johnson–Wilson spectrum Abstract Image$\widehat {\mathrm {E}(n)}$.

高半代数 K 理论与红移
我们定义了高半加代数K理论,它是代数K理论的一个变体,考虑到了高半加结构,比如$\mathrm {K}(n)$- 和$\mathrm {T}(n)$-local categories。我们证明它满足红移猜想的一种形式。也就是说,如果 $R$ 是高度为 $\leq n$ 的环谱,那么它的半加 K 理论高度为 $\leq n+1$。在进一步假设 $R$ 满足卢宾-塔特谱 $\mathrm {E}_n$ 等条件的情况下,我们证明它的半增加代数 K 理论的高度正好是 $n+1$。最后,我们把半加代数 K 理论与 $\mathrm {T}(n+1)$ 本地化 K 理论联系起来,证明它们对于任何 $p$ 不可逆环谱和完整的约翰逊-威尔逊谱 $\widehat {\mathrm {E}(n)}$ 都是重合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信