Coupled Thermal Solidification Process Simulation of Sapphire Growth

IF 2.4 3区 材料科学 Q3 ENGINEERING, MANUFACTURING
{"title":"Coupled Thermal Solidification Process Simulation of Sapphire Growth","authors":"","doi":"10.1007/s40192-023-00321-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Thermal distribution during the sapphire growth process determines to a great extent the thermal stresses and dislocation density in sapphire. In this work, thermal and defect simulations of sapphire growth in a simplified single-boule furnace are presented. The heat transfer in the furnace is modeled via ANSYS Fluent® by considering conduction, convection and radiation effects. A dislocation density-based crystal plasticity model is applied for the numerical simulation of dislocation evolution during the crystal growth of sapphire. The physical models are validated by using a temporal series of measurements in the real furnace geometry, which capture the crystal–melt interface position during the technological growth process. The growth rate and the shape of the crystal growth front are analyzed for different side and top heater powers which result in different thermal distributions in the furnace. It is found that the cooling flux at the crucible bottom wall determines to a great extent the growth profile in the first half of the growth stage. Only toward the end of the growth stage, different top and side power distributions induce different growth front shapes. The effect of the convexity of the growth surface on the generation of dislocation defects is investigated by the crystal plasticity model. The results of simulations show that the convexity of the growth surface has a significant effect on the generation of dislocations.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-023-00321-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal distribution during the sapphire growth process determines to a great extent the thermal stresses and dislocation density in sapphire. In this work, thermal and defect simulations of sapphire growth in a simplified single-boule furnace are presented. The heat transfer in the furnace is modeled via ANSYS Fluent® by considering conduction, convection and radiation effects. A dislocation density-based crystal plasticity model is applied for the numerical simulation of dislocation evolution during the crystal growth of sapphire. The physical models are validated by using a temporal series of measurements in the real furnace geometry, which capture the crystal–melt interface position during the technological growth process. The growth rate and the shape of the crystal growth front are analyzed for different side and top heater powers which result in different thermal distributions in the furnace. It is found that the cooling flux at the crucible bottom wall determines to a great extent the growth profile in the first half of the growth stage. Only toward the end of the growth stage, different top and side power distributions induce different growth front shapes. The effect of the convexity of the growth surface on the generation of dislocation defects is investigated by the crystal plasticity model. The results of simulations show that the convexity of the growth surface has a significant effect on the generation of dislocations.

蓝宝石生长的耦合热凝固过程模拟
摘要 蓝宝石生长过程中的热分布在很大程度上决定了蓝宝石中的热应力和位错密度。本文介绍了在简化的单槽炉中蓝宝石生长的热模拟和缺陷模拟。考虑到传导、对流和辐射效应,通过 ANSYS Fluent® 对炉内的热传导进行建模。应用基于位错密度的晶体塑性模型,对蓝宝石晶体生长过程中的位错演变进行了数值模拟。物理模型通过使用真实熔炉几何形状中的一系列时间测量数据进行验证,这些测量数据捕捉了技术生长过程中晶体与熔体界面的位置。分析了不同侧面和顶部加热器功率下的晶体生长速率和晶体生长前沿的形状,这导致了炉内不同的热分布。研究发现,坩埚底壁的冷却通量在很大程度上决定了生长阶段前半段的生长曲线。只有在生长阶段末期,不同的顶部和侧面功率分布才会导致不同的生长前沿形状。通过晶体塑性模型研究了生长表面的凸度对位错缺陷产生的影响。模拟结果表明,生长表面的凸度对位错的产生有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Integrating Materials and Manufacturing Innovation
Integrating Materials and Manufacturing Innovation Engineering-Industrial and Manufacturing Engineering
CiteScore
5.30
自引率
9.10%
发文量
42
审稿时长
39 days
期刊介绍: The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信