Further study of the erosion mechanism of calcium salt on 517 phase

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yan Guan, Xiao Han, Zhiqi Hu
{"title":"Further study of the erosion mechanism of calcium salt on 517 phase","authors":"Yan Guan, Xiao Han, Zhiqi Hu","doi":"10.1680/jadcr.23.00078","DOIUrl":null,"url":null,"abstract":"As the main hydration product of magnesium oxysulfate (MOS) cement, 517 phase (5Mg(OH)<sub>2</sub>·MgSO<sub>4</sub>·7H<sub>2</sub>O) is one of the main sources of MOS cement strength. At present, the experimental results show that calcium ions have a great influence on the stability of 517 phase, so this paper mainly explores the erosion process and mechanism of calcium ions on 517 phase. The 517 phase with 94.56 % purity was synthesized in this paper, and the erosion effect of different calcium salts on 517 phase was also characterized, where thermogravimetric-differential scanning calorimetry (TG-DSC), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) were used to analyze the performance changes of 517 phase under different calcium salt erosion. The results show that in the solution, Ca<sup>2+</sup> combined with SO<sub>4</sub><sup>2+</sup> in 517 phase, resulting in an increase in the spacing between the MgO<sub>6</sub> octahedron layers in 517 phase thus destroying the structure of 517 phase. Moreover, when ions diffused, MgO<sub>6</sub> octahedron and Cl<sup>2+</sup> recombined into 518 phase (5Mg(OH)<sub>2</sub>·MgCl<sub>2</sub>·8H<sub>2</sub>O). In addition, insoluble weddellite was also found to erode 517 phase to a certain extent, while the 517 phase blended with gypsum was stable. The simulation results of molecular dynamics also showed that Ca<sup>2+</sup> had better adsorption ability for SO<sub>4</sub><sup>2+</sup> and Cl<sup>2+</sup> than Mg<sup>2+</sup>. When it was in contact with 517 phase, Ca<sup>2+</sup> was absorbed near SO<sub>4</sub><sup>2+</sup> and Cl<sup>2+</sup> was brought into the system.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the main hydration product of magnesium oxysulfate (MOS) cement, 517 phase (5Mg(OH)2·MgSO4·7H2O) is one of the main sources of MOS cement strength. At present, the experimental results show that calcium ions have a great influence on the stability of 517 phase, so this paper mainly explores the erosion process and mechanism of calcium ions on 517 phase. The 517 phase with 94.56 % purity was synthesized in this paper, and the erosion effect of different calcium salts on 517 phase was also characterized, where thermogravimetric-differential scanning calorimetry (TG-DSC), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) were used to analyze the performance changes of 517 phase under different calcium salt erosion. The results show that in the solution, Ca2+ combined with SO42+ in 517 phase, resulting in an increase in the spacing between the MgO6 octahedron layers in 517 phase thus destroying the structure of 517 phase. Moreover, when ions diffused, MgO6 octahedron and Cl2+ recombined into 518 phase (5Mg(OH)2·MgCl2·8H2O). In addition, insoluble weddellite was also found to erode 517 phase to a certain extent, while the 517 phase blended with gypsum was stable. The simulation results of molecular dynamics also showed that Ca2+ had better adsorption ability for SO42+ and Cl2+ than Mg2+. When it was in contact with 517 phase, Ca2+ was absorbed near SO42+ and Cl2+ was brought into the system.
钙盐对 517 相侵蚀机理的进一步研究
517 相(5Mg(OH)2-MgSO4-7H2O)作为硫酸镁(MOS)水泥的主要水化产物,是 MOS 水泥强度的主要来源之一。目前,实验结果表明钙离子对 517 相的安定性有很大影响,因此本文主要探讨钙离子对 517 相的侵蚀过程和机理。本文合成了纯度为 94.56 % 的 517 相,并对不同钙盐对 517 相的侵蚀作用进行了表征,采用热重-差示扫描量热法(TG-DSC)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选区电子衍射(SAED)、X 射线衍射(XRD)分析了 517 相在不同钙盐侵蚀下的性能变化。结果表明,在溶液中,517 相中的 Ca2+ 与 SO42+ 结合,导致 517 相中 MgO6 八面体层间距增大,从而破坏了 517 相的结构。此外,当离子扩散时,MgO6 八面体和 Cl2+ 重新结合成 518 相(5Mg(OH)2-MgCl2-8H2O)。此外,还发现不溶性楔形卫星也会在一定程度上侵蚀 517 相,而与石膏混合的 517 相则很稳定。分子动力学模拟结果还表明,Ca2+ 对 SO42+ 和 Cl2+ 的吸附能力优于 Mg2+。当 Ca2+ 与 517 相接触时,Ca2+ 在 SO42+ 附近被吸收,Cl2+ 被带入体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信