Lin Zhou, Zehui Wang, Lai Wang, Xinfu Zhang* and Yi Xiao,
{"title":"Tetrazine-Based Ratiometric Nitric Oxide Sensor Identifies Endogenous Nitric Oxide in Atherosclerosis Plaques by Riding Macrophages as a Smart Vehicle","authors":"Lin Zhou, Zehui Wang, Lai Wang, Xinfu Zhang* and Yi Xiao, ","doi":"10.1021/jacs.3c12181","DOIUrl":null,"url":null,"abstract":"<p >Atherosclerosis (AS) is the formation of plaques in blood vessels, which leads to serious cardiovascular diseases. Current research has disclosed that the formation of AS plaques is highly related to the foaming of macrophages. However, there is a lack of detailed molecular biological mechanisms. We proposed a “live sensor” by grafting a tetrazine-based ratiometric NO probe within macrophages through metabolic and bio-orthogonal labeling. This “live sensor” was proved to target the AS plaques with a diameter of only tens of micrometers specifically and visualized endogenous NO at two lesion stages in the AS mouse model. The ratiometric signals from the probe confirmed the participation of NO during AS and indicated that the generation of endogenous NO increased significantly as the lesion progressed. Our proposal of this “live sensor” provided a native and smart strategy to target and deliver small molecular probes to the AS plaques at the in vivo level, which can be used as universal platforms for the detection of reactive molecules or microenvironmental factors in AS.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"145 51","pages":"28296–28306"},"PeriodicalIF":15.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.3c12181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis (AS) is the formation of plaques in blood vessels, which leads to serious cardiovascular diseases. Current research has disclosed that the formation of AS plaques is highly related to the foaming of macrophages. However, there is a lack of detailed molecular biological mechanisms. We proposed a “live sensor” by grafting a tetrazine-based ratiometric NO probe within macrophages through metabolic and bio-orthogonal labeling. This “live sensor” was proved to target the AS plaques with a diameter of only tens of micrometers specifically and visualized endogenous NO at two lesion stages in the AS mouse model. The ratiometric signals from the probe confirmed the participation of NO during AS and indicated that the generation of endogenous NO increased significantly as the lesion progressed. Our proposal of this “live sensor” provided a native and smart strategy to target and deliver small molecular probes to the AS plaques at the in vivo level, which can be used as universal platforms for the detection of reactive molecules or microenvironmental factors in AS.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.