Pre-stimulus bioelectrical activity in light-adapted ERG under blue versus white background

IF 1.1 4区 医学 Q4 NEUROSCIENCES
Katherine Tsay, Sara Safari, Abdullah Abu-Samra, Jan Kremers, Radouil Tzekov
{"title":"Pre-stimulus bioelectrical activity in light-adapted ERG under blue versus white background","authors":"Katherine Tsay, Sara Safari, Abdullah Abu-Samra, Jan Kremers, Radouil Tzekov","doi":"10.1017/s0952523823000032","DOIUrl":null,"url":null,"abstract":"<p>To compare the baseline signal between two conditions used to generate the photopic negative response (PhNR) of the full-field electroretinogram (ERG): red flash on a blue background (RoB) and white flash on a white background (LA3). The secondary purpose is to identify how the level of pre-stimulus signal affects obtaining an unambiguous PhNR component. A retrospective chart review was conducted on four cohorts of patients undergoing routine ERG testing. In each group, LA3 was recorded the same way while RoB was generated differently using various luminances of red and blue light. The background bioelectrical activity 30 ms before the flash was extracted, and the root mean square (RMS) of the signal was calculated and compared between RoB and LA3 using Wilcoxon test. Pre-stimulus noise was significantly higher under RoB stimulation versus LA3 in all four conditions for both right and left eyes (ratio RoB/LA3 RMS 1.70 and 1.57 respectively, <span>p</span> &lt; 0.033). There was also no significant difference between the RMS of either LA3 or RoB across protocols, indicating that the baseline noise across cohorts were comparable. Additionally, pre-stimulus noise was higher in signals where PhNR was not clearly identifiable as an ERG component versus signals with the presence of unambiguous PhNR component under RoB in all four groups for both eyes (<span>p</span> &lt; 0.05), whereas the difference under LA3 was less pronounced. Our study suggests that LA3 produces less background bioelectrical activity, likely due to decreased facial muscle activity. As it seems that the pre-stimulus signal level affects PhNR recordability, LA3 may also produce a better-quality signal compared to RoB. Therefore, until conditions for a comparable bioelectrical activity under RoB are established, we believe that LA3 should be considered at least as a supplementary method to evaluate retinal ganglion cell function by ERG.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"31 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/s0952523823000032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To compare the baseline signal between two conditions used to generate the photopic negative response (PhNR) of the full-field electroretinogram (ERG): red flash on a blue background (RoB) and white flash on a white background (LA3). The secondary purpose is to identify how the level of pre-stimulus signal affects obtaining an unambiguous PhNR component. A retrospective chart review was conducted on four cohorts of patients undergoing routine ERG testing. In each group, LA3 was recorded the same way while RoB was generated differently using various luminances of red and blue light. The background bioelectrical activity 30 ms before the flash was extracted, and the root mean square (RMS) of the signal was calculated and compared between RoB and LA3 using Wilcoxon test. Pre-stimulus noise was significantly higher under RoB stimulation versus LA3 in all four conditions for both right and left eyes (ratio RoB/LA3 RMS 1.70 and 1.57 respectively, p < 0.033). There was also no significant difference between the RMS of either LA3 or RoB across protocols, indicating that the baseline noise across cohorts were comparable. Additionally, pre-stimulus noise was higher in signals where PhNR was not clearly identifiable as an ERG component versus signals with the presence of unambiguous PhNR component under RoB in all four groups for both eyes (p < 0.05), whereas the difference under LA3 was less pronounced. Our study suggests that LA3 produces less background bioelectrical activity, likely due to decreased facial muscle activity. As it seems that the pre-stimulus signal level affects PhNR recordability, LA3 may also produce a better-quality signal compared to RoB. Therefore, until conditions for a comparable bioelectrical activity under RoB are established, we believe that LA3 should be considered at least as a supplementary method to evaluate retinal ganglion cell function by ERG.

蓝色与白色背景下光适应 ERG 的刺激前生物电活动
比较两种产生全场视网膜电图(ERG)光负响应(PhNR)的条件:蓝底红闪(RoB)和白底白闪(LA3)的基线信号。第二个目的是确定预刺激信号的水平如何影响获得明确的PhNR成分。对四组接受常规ERG测试的患者进行回顾性图表回顾。在每一组中,LA3的记录方式相同,而RoB的产生方式不同,使用不同亮度的红蓝光。提取闪光灯前30ms的背景生物电活动,计算信号的均方根(RMS),并采用Wilcoxon检验比较RoB和LA3的差异。在所有四种情况下,右眼和左眼在RoB刺激下的预刺激噪声均显著高于LA3(比值RoB/LA3 RMS分别为1.70和1.57,p <0.033)。不同方案的LA3或RoB的均方根值之间也没有显著差异,表明不同队列的基线噪声具有可比性。此外,在所有四组的双眼中,与在RoB下存在明确的PhNR成分的信号相比,PhNR作为ERG成分的信号中的预刺激噪声更高(p <0.05),而LA3组差异不明显。我们的研究表明,LA3产生较少的背景生物电活动,可能是由于面部肌肉活动减少。由于预刺激信号水平似乎会影响PhNR的可记录性,因此与RoB相比,LA3也可能产生质量更好的信号。因此,在罗伯下可比较生物电活性的条件建立之前,我们认为LA3至少可以作为ERG评价视网膜神经节细胞功能的补充方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信