{"title":"Practical alternating least squares for tensor ring decomposition","authors":"Yajie Yu, Hanyu Li","doi":"10.1002/nla.2542","DOIUrl":null,"url":null,"abstract":"Tensor ring (TR) decomposition has been widely applied as an effective approach in a variety of applications to discover the hidden low-rank patterns in multidimensional and higher-order data. A well-known method for TR decomposition is the alternating least squares (ALS). However, solving the ALS subproblems often suffers from high cost issue, especially for large-scale tensors. In this paper, we provide two strategies to tackle this issue and design three ALS-based algorithms. Specifically, the first strategy is used to simplify the calculation of the coefficient matrices of the normal equations for the ALS subproblems, which takes full advantage of the structure of the coefficient matrices of the subproblems and hence makes the corresponding algorithm perform much better than the regular ALS method in terms of computing time. The second strategy is to stabilize the ALS subproblems by QR factorizations on TR-cores, and hence the corresponding algorithms are more numerically stable compared with our first algorithm. Extensive numerical experiments on synthetic and real data are given to illustrate and confirm the above results. In addition, we also present the complexity analyses of the proposed algorithms.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2542","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tensor ring (TR) decomposition has been widely applied as an effective approach in a variety of applications to discover the hidden low-rank patterns in multidimensional and higher-order data. A well-known method for TR decomposition is the alternating least squares (ALS). However, solving the ALS subproblems often suffers from high cost issue, especially for large-scale tensors. In this paper, we provide two strategies to tackle this issue and design three ALS-based algorithms. Specifically, the first strategy is used to simplify the calculation of the coefficient matrices of the normal equations for the ALS subproblems, which takes full advantage of the structure of the coefficient matrices of the subproblems and hence makes the corresponding algorithm perform much better than the regular ALS method in terms of computing time. The second strategy is to stabilize the ALS subproblems by QR factorizations on TR-cores, and hence the corresponding algorithms are more numerically stable compared with our first algorithm. Extensive numerical experiments on synthetic and real data are given to illustrate and confirm the above results. In addition, we also present the complexity analyses of the proposed algorithms.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.