Correlative atomic force microscopy and scanning electron microscopy of bacteria-diamond-metal nanocomposites

IF 2.1 3区 工程技术 Q2 MICROSCOPY
David Rutherford , Kateřina Kolářová , Jaroslav Čech , Petr Haušild , Jaroslav Kuliček , Egor Ukraintsev , Štěpán Stehlík , Radek Dao , Jan Neuman , Bohuslav Rezek
{"title":"Correlative atomic force microscopy and scanning electron microscopy of bacteria-diamond-metal nanocomposites","authors":"David Rutherford ,&nbsp;Kateřina Kolářová ,&nbsp;Jaroslav Čech ,&nbsp;Petr Haušild ,&nbsp;Jaroslav Kuliček ,&nbsp;Egor Ukraintsev ,&nbsp;Štěpán Stehlík ,&nbsp;Radek Dao ,&nbsp;Jan Neuman ,&nbsp;Bohuslav Rezek","doi":"10.1016/j.ultramic.2023.113909","DOIUrl":null,"url":null,"abstract":"<div><p>Research investigating the interface between biological organisms and nanomaterials nowadays requires multi-faceted microscopic methods to elucidate the interaction mechanisms and effects. Here we describe a novel approach and methodology correlating data from an atomic force microscope inside a scanning electron microscope (AFM-in-SEM). This approach is demonstrated on bacteria-diamond-metal nanocomposite samples relevant in current life science research. We describe a procedure for preparing such multi-component test samples containing <em>E. coli</em> bacteria and chitosan-coated hydrogenated nanodiamonds decorated with silver nanoparticles on a carbon-coated gold grid. Microscopic topography information (AFM) is combined with chemical, material, and morphological information (SEM using SE and BSE at varied acceleration voltages) from the same region of interest and processed to create 3D correlative probe-electron microscopy (CPEM) images. We also establish a novel 3D RGB color image algorithm for merging multiple SE/BSE data from SEM with the AFM surface topography data which provides additional information about microscopic interaction of the diamond-metal nanocomposite with bacteria, not achievable by individual analyses. The methodology of CPEM data interpretation is independently corroborated by further <em>in-situ</em> (EDS) and <em>ex-situ</em> (micro-Raman) chemical characterization as well as by force volume AFM analysis. We also discuss the broader applicability and benefits of the methodology for life science research.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399123002267","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Research investigating the interface between biological organisms and nanomaterials nowadays requires multi-faceted microscopic methods to elucidate the interaction mechanisms and effects. Here we describe a novel approach and methodology correlating data from an atomic force microscope inside a scanning electron microscope (AFM-in-SEM). This approach is demonstrated on bacteria-diamond-metal nanocomposite samples relevant in current life science research. We describe a procedure for preparing such multi-component test samples containing E. coli bacteria and chitosan-coated hydrogenated nanodiamonds decorated with silver nanoparticles on a carbon-coated gold grid. Microscopic topography information (AFM) is combined with chemical, material, and morphological information (SEM using SE and BSE at varied acceleration voltages) from the same region of interest and processed to create 3D correlative probe-electron microscopy (CPEM) images. We also establish a novel 3D RGB color image algorithm for merging multiple SE/BSE data from SEM with the AFM surface topography data which provides additional information about microscopic interaction of the diamond-metal nanocomposite with bacteria, not achievable by individual analyses. The methodology of CPEM data interpretation is independently corroborated by further in-situ (EDS) and ex-situ (micro-Raman) chemical characterization as well as by force volume AFM analysis. We also discuss the broader applicability and benefits of the methodology for life science research.

Abstract Image

Abstract Image

细菌-金刚石-金属纳米复合材料的相关原子力显微镜和扫描电子显微镜研究
目前,研究生物有机体与纳米材料之间的界面需要多方面的微观方法来阐明相互作用的机制和效果。在这里,我们描述了一种新的方法和方法,将原子力显微镜中的数据与扫描电子显微镜(AFM-in-SEM)相关联。该方法在当前生命科学研究中相关的细菌-金刚石-金属纳米复合材料样品上得到了验证。我们描述了一种制备这种多组分测试样品的程序,该样品含有大肠杆菌和壳聚糖包覆的氢化纳米金刚石,并在碳包覆的金网格上装饰银纳米颗粒。显微形貌(AFM)与来自同一感兴趣区域的化学、材料和形态信息(在不同加速电压下使用SE和BSE的SEM)相结合,并进行处理以创建三维相关探针电子显微镜(CPEM)图像。我们还建立了一种新的3D RGB彩色图像算法,用于将来自SEM的多个SE/BSE数据与AFM表面形貌相结合,从而提供有关金刚石-金属纳米复合材料与细菌微观相互作用的额外信息,这是单独分析无法实现的。CPEM数据解释方法由进一步的原位(EDS)和非原位(微拉曼)化学表征以及力体积AFM分析独立证实。我们还讨论了该方法在生命科学研究中的广泛适用性和益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信