Immersions of Sasaki–Ricci solitons into homogeneous Sasakian manifolds

IF 0.6 3区 数学 Q3 MATHEMATICS
R. Mossa, G. Placini
{"title":"Immersions of Sasaki–Ricci solitons into homogeneous Sasakian manifolds","authors":"R. Mossa,&nbsp;G. Placini","doi":"10.1007/s10455-023-09939-4","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss local Sasakian immersion of Sasaki–Ricci solitons (SRS) into fiber products of homogeneous Sasakian manifolds. In particular, we prove that SRS locally induced by a large class of fiber products of homogeneous Sasakian manifolds are, in fact, <span>\\(\\eta \\)</span>-Einstein. The results are stronger for immersions into Sasakian space forms. Moreover, we show an example of a Kähler–Ricci soliton on <span>\\(\\mathbb C^n\\)</span> which admits no local holomorphic isometry into products of homogeneous bounded domains with flat Kähler manifolds and generalized flag manifolds.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09939-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss local Sasakian immersion of Sasaki–Ricci solitons (SRS) into fiber products of homogeneous Sasakian manifolds. In particular, we prove that SRS locally induced by a large class of fiber products of homogeneous Sasakian manifolds are, in fact, \(\eta \)-Einstein. The results are stronger for immersions into Sasakian space forms. Moreover, we show an example of a Kähler–Ricci soliton on \(\mathbb C^n\) which admits no local holomorphic isometry into products of homogeneous bounded domains with flat Kähler manifolds and generalized flag manifolds.

佐佐木-里奇孤子在均质佐佐木流形中的沉浸
讨论了Sasaki-Ricci孤子(SRS)在均匀sasaki流形纤维产物中的局部sasaki浸入。特别地,我们证明了由一大类齐次sasaki流形的纤维积局部诱导的SRS实际上是\(\eta \) -爱因斯坦。沉浸在sasaki空间形式中的结果更强。此外,我们还给出了一个在\(\mathbb C^n\)上的Kähler-Ricci孤子的例子,该孤子不允许局部全纯等边化为平坦Kähler流形和广义标志流形的齐次有界域积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信