{"title":"Emergent communication enhances foraging behavior in evolved swarms controlled by spiking neural networks","authors":"Cristian Jimenez Romero, Alper Yegenoglu, Aarón Pérez Martín, Sandra Diaz-Pier, Abigail Morrison","doi":"10.1007/s11721-023-00231-6","DOIUrl":null,"url":null,"abstract":"<p>Social insects such as ants and termites communicate via pheromones which allow them to coordinate their activity and solve complex tasks as a swarm, e.g. foraging for food or finding their way back to the nest. This behavior was shaped through evolutionary processes over millions of years. In computational models, self-coordination in swarms has been implemented using probabilistic or pre-defined simple action rules to shape the decision of each agent and the collective behavior. However, manual tuned decision rules may limit the emergent behavior of the swarm. In this work we investigate the emergence of self-coordination and communication in evolved swarms without defining any explicit rule. For this purpose, we evolve a swarm of agents representing an ant colony. We use an evolutionary algorithm to optimize a spiking neural network (SNN) which serves as an artificial brain to control the behavior of each agent. The goal of the evolved colony is to find optimal ways to forage for food and return it to the nest in the shortest amount of time. In the evolutionary phase, the ants are able to learn to collaborate by depositing pheromone near food piles and near the nest to guide other ants. The pheromone usage is not manually encoded into the network; instead, this behavior is established through the optimization procedure. We observe that pheromone-based communication enables the ants to perform better in comparison to colonies where communication via pheromone did not emerge. Furthermore, we assess the foraging performance of the ant colonies by comparing the SNN-based model to a multi-agent rule-based system. Our results show that the SNN-based model can efficiently complete the foraging task in a short amount of time. Our approach illustrates that even in the absence of pre-defined rules, self-coordination via pheromone emerges as a result of the network optimization. This work serves as a proof of concept for the possibility of creating complex applications utilizing SNNs as underlying architectures for multi-agent interactions where communication and self-coordination is desired.\n</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"33 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-023-00231-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Social insects such as ants and termites communicate via pheromones which allow them to coordinate their activity and solve complex tasks as a swarm, e.g. foraging for food or finding their way back to the nest. This behavior was shaped through evolutionary processes over millions of years. In computational models, self-coordination in swarms has been implemented using probabilistic or pre-defined simple action rules to shape the decision of each agent and the collective behavior. However, manual tuned decision rules may limit the emergent behavior of the swarm. In this work we investigate the emergence of self-coordination and communication in evolved swarms without defining any explicit rule. For this purpose, we evolve a swarm of agents representing an ant colony. We use an evolutionary algorithm to optimize a spiking neural network (SNN) which serves as an artificial brain to control the behavior of each agent. The goal of the evolved colony is to find optimal ways to forage for food and return it to the nest in the shortest amount of time. In the evolutionary phase, the ants are able to learn to collaborate by depositing pheromone near food piles and near the nest to guide other ants. The pheromone usage is not manually encoded into the network; instead, this behavior is established through the optimization procedure. We observe that pheromone-based communication enables the ants to perform better in comparison to colonies where communication via pheromone did not emerge. Furthermore, we assess the foraging performance of the ant colonies by comparing the SNN-based model to a multi-agent rule-based system. Our results show that the SNN-based model can efficiently complete the foraging task in a short amount of time. Our approach illustrates that even in the absence of pre-defined rules, self-coordination via pheromone emerges as a result of the network optimization. This work serves as a proof of concept for the possibility of creating complex applications utilizing SNNs as underlying architectures for multi-agent interactions where communication and self-coordination is desired.
期刊介绍:
Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research
and developments in the multidisciplinary field of swarm intelligence. The journal publishes
original research articles and occasional review articles on theoretical, experimental and/or
practical aspects of swarm intelligence. All articles are published both in print and in electronic
form. There are no page charges for publication. Swarm Intelligence is published quarterly.
The field of swarm intelligence deals with systems composed of many individuals that coordinate
using decentralized control and self-organization. In particular, it focuses on the collective
behaviors that result from the local interactions of the individuals with each other and with their
environment. It is a fast-growing field that encompasses the efforts of researchers in multiple
disciplines, ranging from ethology and social science to operations research and computer
engineering.
Swarm Intelligence will report on advances in the understanding and utilization of swarm
intelligence systems, that is, systems that are based on the principles of swarm intelligence. The
following subjects are of particular interest to the journal:
• modeling and analysis of collective biological systems such as social insect colonies, flocking
vertebrates, and human crowds as well as any other swarm intelligence systems;
• application of biological swarm intelligence models to real-world problems such as distributed
computing, data clustering, graph partitioning, optimization and decision making;
• theoretical and empirical research in ant colony optimization, particle swarm optimization,
swarm robotics, and other swarm intelligence algorithms.