Galois Closure of a Fivefold Covering and Decomposition of Its Jacobian

IF 0.4 3区 数学 Q4 MATHEMATICS
Benjamín M. Moraga
{"title":"Galois Closure of a Fivefold Covering and Decomposition of Its Jacobian","authors":"Benjamín M. Moraga","doi":"10.1007/s00031-023-09827-y","DOIUrl":null,"url":null,"abstract":"<p>For an arbitrary fivefold ramified covering <span>\\(\\varvec{f :X\\rightarrow Y}\\)</span> between compact Riemann surfaces, each possible Galois closure <span>\\(\\varvec{\\hat{f}:\\hat{X}\\rightarrow Y}\\)</span> is determined in terms of the branching data of <span>\\(\\varvec{f}\\)</span>. Since <span>\\(\\varvec{{{\\,\\textrm{Mon}\\,}}(f)}\\)</span> acts on <span>\\(\\varvec{\\hat{f}}\\)</span>, it also acts on the Jacobian variety <span>\\(\\varvec{{{\\,\\textrm{J}\\,}}(X)}\\)</span>, and we describe its group algebra decomposition in terms of the Jacobian and Prym varieties of the intermediate coverings of <span>\\(\\varvec{\\hat{f}}\\)</span>. The dimension and induced polarization of each abelian variety in the decomposition is computed in terms of the branching data of <span>\\(\\varvec{f}\\)</span>.</p>","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":"12 4","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09827-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an arbitrary fivefold ramified covering \(\varvec{f :X\rightarrow Y}\) between compact Riemann surfaces, each possible Galois closure \(\varvec{\hat{f}:\hat{X}\rightarrow Y}\) is determined in terms of the branching data of \(\varvec{f}\). Since \(\varvec{{{\,\textrm{Mon}\,}}(f)}\) acts on \(\varvec{\hat{f}}\), it also acts on the Jacobian variety \(\varvec{{{\,\textrm{J}\,}}(X)}\), and we describe its group algebra decomposition in terms of the Jacobian and Prym varieties of the intermediate coverings of \(\varvec{\hat{f}}\). The dimension and induced polarization of each abelian variety in the decomposition is computed in terms of the branching data of \(\varvec{f}\).

五重覆盖的伽罗瓦封闭及其雅各比分解
对于紧致黎曼曲面之间的任意五重分支覆盖\(\varvec{f :X\rightarrow Y}\),每个可能的伽罗瓦闭包\(\varvec{\hat{f}:\hat{X}\rightarrow Y}\)都是根据\(\varvec{f}\)的分支数据确定的。由于\(\varvec{{{\,\textrm{Mon}\,}}(f)}\)作用于\(\varvec{\hat{f}}\),它也作用于雅可比变换\(\varvec{{{\,\textrm{J}\,}}(X)}\),我们用\(\varvec{\hat{f}}\)的中间覆盖的雅可比变换和Prym变换来描述它的群代数分解。利用\(\varvec{f}\)的分支数据计算了分解过程中各阿贝尔变量的维数和诱导极化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transformation Groups
Transformation Groups 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
100
审稿时长
9 months
期刊介绍: Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信