A hybrid finite element method for moving-habitat models in two spatial dimensions

Jane Shaw MacDonald, Yves Bourgault, Frithjof Lutscher
{"title":"A hybrid finite element method for moving-habitat models in two spatial dimensions","authors":"Jane Shaw MacDonald, Yves Bourgault, Frithjof Lutscher","doi":"arxiv-2312.07842","DOIUrl":null,"url":null,"abstract":"Moving-habitat models track the density of a population whose suitable\nhabitat shifts as a consequence of climate change. Whereas most previous\nstudies in this area consider 1-dimensional space, we derive and study a\nspatially 2-dimensional moving-habitat model via reaction-diffusion equations.\nThe population inhabits the whole space. The suitable habitat is a bounded\nregion where population growth is positive; the unbounded complement of its\nclosure is unsuitable with negative growth. The interface between the two\nhabitat types moves, depicting the movement of the suitable habitat poleward.\nDetailed modelling of individual movement behaviour induces a nonstandard\ndiscontinuity in the density across the interface. For the corresponding\nsemi-discretised system we prove well-posedness for a constant shifting\nvelocity before constructing an implicit-explicit hybrid finite element method.\nIn this method, a Lagrange multiplier weakly imposes the jump discontinuity\nacross the interface. For a stationary interface, we derive optimal a priori\nerror estimates over a conformal mesh with nonconformal discretisation. We\ndemonstrate with numerical convergence tests that these results hold for the\nmoving interface. Finally, we demonstrate the strength of our hybrid finite\nelement method with two biologically motivated cases, one for a domain with a\ncurved boundary and the other for non-constant shifting velocity.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Moving-habitat models track the density of a population whose suitable habitat shifts as a consequence of climate change. Whereas most previous studies in this area consider 1-dimensional space, we derive and study a spatially 2-dimensional moving-habitat model via reaction-diffusion equations. The population inhabits the whole space. The suitable habitat is a bounded region where population growth is positive; the unbounded complement of its closure is unsuitable with negative growth. The interface between the two habitat types moves, depicting the movement of the suitable habitat poleward. Detailed modelling of individual movement behaviour induces a nonstandard discontinuity in the density across the interface. For the corresponding semi-discretised system we prove well-posedness for a constant shifting velocity before constructing an implicit-explicit hybrid finite element method. In this method, a Lagrange multiplier weakly imposes the jump discontinuity across the interface. For a stationary interface, we derive optimal a priori error estimates over a conformal mesh with nonconformal discretisation. We demonstrate with numerical convergence tests that these results hold for the moving interface. Finally, we demonstrate the strength of our hybrid finite element method with two biologically motivated cases, one for a domain with a curved boundary and the other for non-constant shifting velocity.
二维移动栖息地模型的混合有限元方法
迁移栖息地模型追踪适宜栖息地因气候变化而改变的人口密度。在此基础上,我们通过反应扩散方程推导并研究了空间上的二维移动栖息地模型。人口居住在整个空间。适宜的栖息地是人口正增长的有界区域;其闭包的无界补不适合负增长。两种栖息地类型之间的界面移动,描绘了适合的栖息地向两极移动。个体运动行为的详细建模导致了跨界面密度的非标准不连续。对于相应的半离散系统,在构造隐显混合有限元法之前,先证明了其位移速度为常数的适定性。在这种方法中,拉格朗日乘法器弱地施加了跨界面的跳变不连续。对于一个固定的界面,我们得到了一个最优的优先误差估计在保形网格与非保形离散。我们用数值收敛测试证明了这些结果适用于移动界面。最后,我们用两种生物驱动的情况证明了混合有限元方法的强度,一种是弯曲边界的区域,另一种是非恒定移动速度的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信