{"title":"Node fault diagnosis algorithm for wireless sensor networks based on BN and WSN","authors":"Ming Li","doi":"10.1186/s13635-023-00149-w","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks, as an emerging information exchange technology, have been widely applied in many fields. However, nodes tend to become damaged in harsh and complex environmental conditions. In order to effectively diagnose node faults, a Bayesian model-based node fault diagnosis model was proposed. Firstly, a comprehensive analysis was conducted into the operative principles of wireless sensor systems, whereby fault-related features were then extrapolated. A Bayesian diagnostic model was constructed using the maximum likelihood method with sufficient sample features, and a joint tree model was introduced for node diagnosis. Due to the insufficient accuracy of Bayesian models in processing small sample data, a constrained maximum entropy method was proposed as the prediction module of the model. The use of small sample data to obtain the initial model parameters leads to improved performance and accuracy of the model. During parameter learning tests, the limited maximum entropy model outperformed the other two learning models on a smaller dataset of 35 with a distance value of 2.65. In node fault diagnosis, the diagnostic time of the three models was compared, and the average diagnostic time of the proposed diagnostic model was 41.2 seconds. In the node diagnosis accuracy test, the proposed model has the highest node fault diagnosis accuracy, with an average diagnosis accuracy of 0.946, which is superior to the other two models. In summary, the node fault diagnosis model based on Bayesian model proposed in this study has important research significance and practical application value in wireless sensor networks. By improving the reliability and maintenance efficiency of the network, this model provides strong support for the development and application of wireless sensor networks.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"70 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-023-00149-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks, as an emerging information exchange technology, have been widely applied in many fields. However, nodes tend to become damaged in harsh and complex environmental conditions. In order to effectively diagnose node faults, a Bayesian model-based node fault diagnosis model was proposed. Firstly, a comprehensive analysis was conducted into the operative principles of wireless sensor systems, whereby fault-related features were then extrapolated. A Bayesian diagnostic model was constructed using the maximum likelihood method with sufficient sample features, and a joint tree model was introduced for node diagnosis. Due to the insufficient accuracy of Bayesian models in processing small sample data, a constrained maximum entropy method was proposed as the prediction module of the model. The use of small sample data to obtain the initial model parameters leads to improved performance and accuracy of the model. During parameter learning tests, the limited maximum entropy model outperformed the other two learning models on a smaller dataset of 35 with a distance value of 2.65. In node fault diagnosis, the diagnostic time of the three models was compared, and the average diagnostic time of the proposed diagnostic model was 41.2 seconds. In the node diagnosis accuracy test, the proposed model has the highest node fault diagnosis accuracy, with an average diagnosis accuracy of 0.946, which is superior to the other two models. In summary, the node fault diagnosis model based on Bayesian model proposed in this study has important research significance and practical application value in wireless sensor networks. By improving the reliability and maintenance efficiency of the network, this model provides strong support for the development and application of wireless sensor networks.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy