Convergence analysis of Hermite approximations for analytic functions

Haiyong Wang, Lun Zhang
{"title":"Convergence analysis of Hermite approximations for analytic functions","authors":"Haiyong Wang, Lun Zhang","doi":"arxiv-2312.07940","DOIUrl":null,"url":null,"abstract":"In this paper, we present a rigorous analysis of root-exponential convergence\nof Hermite approximations, including projection and interpolation methods, for\nfunctions that are analytic in an infinite strip containing the real axis and\nsatisfy certain restrictions on the asymptotic behavior at infinity within this\nstrip. Asymptotically sharp error bounds in the weighted and maximum norms are\nderived. The key ingredients of our analysis are some remarkable contour\nintegral representations for the Hermite coefficients and the remainder of\nHermite spectral interpolations. Further extensions to Gauss--Hermite\nquadrature, Hermite spectral differentiations, generalized Hermite spectral\napproximations and the scaling factor of Hermite approximation are also\ndiscussed. Numerical experiments confirm our theoretical results.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a rigorous analysis of root-exponential convergence of Hermite approximations, including projection and interpolation methods, for functions that are analytic in an infinite strip containing the real axis and satisfy certain restrictions on the asymptotic behavior at infinity within this strip. Asymptotically sharp error bounds in the weighted and maximum norms are derived. The key ingredients of our analysis are some remarkable contour integral representations for the Hermite coefficients and the remainder of Hermite spectral interpolations. Further extensions to Gauss--Hermite quadrature, Hermite spectral differentiations, generalized Hermite spectral approximations and the scaling factor of Hermite approximation are also discussed. Numerical experiments confirm our theoretical results.
解析函数赫米特近似的收敛性分析
本文对包含实轴的无限条上解析函数的根指数逼近的收敛性,包括投影和插值方法,给出了一个严格的分析。导出了加权范数和最大范数的渐近尖锐误差界。我们分析的关键成分是赫米特系数的一些显著的轮廓积分表示和赫米特光谱插值的其余部分。本文还讨论了高斯—赫米特温度、赫米特谱微分、广义赫米特谱近似和赫米特近似的标度因子的进一步推广。数值实验证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信