Modelling and diagnostic tests for Poisson and negative-binomial count time series

Pub Date : 2023-12-13 DOI:10.1007/s00184-023-00934-0
Boris Aleksandrov, Christian H. Weiß, Simon Nik, Maxime Faymonville, Carsten Jentsch
{"title":"Modelling and diagnostic tests for Poisson and negative-binomial count time series","authors":"Boris Aleksandrov, Christian H. Weiß, Simon Nik, Maxime Faymonville, Carsten Jentsch","doi":"10.1007/s00184-023-00934-0","DOIUrl":null,"url":null,"abstract":"<p>When modelling unbounded counts, their marginals are often assumed to follow either Poisson (Poi) or negative binomial (NB) distributions. To test such null hypotheses, we propose goodness-of-fit (GoF) tests based on statistics relying on certain moment properties. By contrast to most approaches proposed in the count-data literature so far, we do not restrict ourselves to specific low-order moments, but consider a flexible class of functions of generalized moments to construct model-diagnostic tests. These cover GoF-tests based on higher-order factorial moments, which are particularly suitable for the Poi- or NB-distribution where simple closed-form expressions for factorial moments of any order exist, but also GoF-tests relying on the respective Stein’s identity for the Poi- or NB-distribution. In the time-dependent case, under mild mixing conditions, we derive the asymptotic theory for GoF tests based on higher-order factorial moments for a wide family of stationary processes having Poi- or NB-marginals, respectively. This family also includes a type of NB-autoregressive model, where we provide clarification of some confusion caused in the literature. Additionally, for the case of independent and identically distributed counts, we prove asymptotic normality results for GoF-tests relying on a Stein identity, and we briefly discuss how its statistic might be used to define an omnibus GoF-test. The performance of the tests is investigated with simulations for both asymptotic and bootstrap implementations, also considering various alternative scenarios for power analyses. A data example of daily counts of downloads of a TeX editor is used to illustrate the application of the proposed GoF-tests.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00934-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When modelling unbounded counts, their marginals are often assumed to follow either Poisson (Poi) or negative binomial (NB) distributions. To test such null hypotheses, we propose goodness-of-fit (GoF) tests based on statistics relying on certain moment properties. By contrast to most approaches proposed in the count-data literature so far, we do not restrict ourselves to specific low-order moments, but consider a flexible class of functions of generalized moments to construct model-diagnostic tests. These cover GoF-tests based on higher-order factorial moments, which are particularly suitable for the Poi- or NB-distribution where simple closed-form expressions for factorial moments of any order exist, but also GoF-tests relying on the respective Stein’s identity for the Poi- or NB-distribution. In the time-dependent case, under mild mixing conditions, we derive the asymptotic theory for GoF tests based on higher-order factorial moments for a wide family of stationary processes having Poi- or NB-marginals, respectively. This family also includes a type of NB-autoregressive model, where we provide clarification of some confusion caused in the literature. Additionally, for the case of independent and identically distributed counts, we prove asymptotic normality results for GoF-tests relying on a Stein identity, and we briefly discuss how its statistic might be used to define an omnibus GoF-test. The performance of the tests is investigated with simulations for both asymptotic and bootstrap implementations, also considering various alternative scenarios for power analyses. A data example of daily counts of downloads of a TeX editor is used to illustrate the application of the proposed GoF-tests.

Abstract Image

分享
查看原文
泊松和负二项计数时间序列的建模和诊断检测
当对无界计数进行建模时,通常假设它们的边际遵循泊松(Poi)或负二项(NB)分布。为了检验这样的零假设,我们提出了基于依赖于某些矩属性的统计的拟合优度(GoF)检验。与迄今为止在计数数据文献中提出的大多数方法相比,我们没有将自己限制在特定的低阶矩上,而是考虑一类灵活的广义矩函数来构建模型诊断检验。这些测试包括基于高阶阶乘矩的gof测试,这些测试特别适用于存在任何阶阶乘矩的简单封闭表达式的Poi-或nb -分布,但也适用于Poi-或nb -分布依赖于各自的Stein恒等式的gof测试。在时间相关的情况下,在轻度混合条件下,我们分别为具有Poi-或nb -边际的广泛平稳过程,导出了基于高阶阶乘矩的GoF检验的渐近理论。该家族还包括一种nb自回归模型,我们在其中澄清了文献中引起的一些混淆。此外,对于独立和同分布计数的情况,我们证明了依赖于Stein恒等式的gof检验的渐近正态性结果,并简要讨论了如何使用其统计量来定义综合gof检验。通过对渐近和自举实现的模拟研究了测试的性能,并考虑了功率分析的各种替代方案。本文使用了一个TeX编辑器每日下载次数的数据示例来说明建议的gof测试的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信