p-linear schemes for sequences modulo pr

Pub Date : 2024-07-01 DOI:10.1016/j.indag.2023.12.003
Frits Beukers
{"title":"p-linear schemes for sequences modulo pr","authors":"Frits Beukers","doi":"10.1016/j.indag.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Many interesting combinatorial sequences, such as Apéry numbers and Franel numbers, enjoy the so-called Lucas property modulo almost all primes <span><math><mi>p</mi></math></span>. Modulo prime powers <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> such sequences have a more complicated behaviour which can be described by matrix versions of the Lucas property called <span><math><mi>p</mi></math></span>-linear schemes. They are generalizations of finite <span><math><mi>p</mi></math></span>-automata. In this paper we construct such <span><math><mi>p</mi></math></span>-linear schemes and give upper bounds for the number of states which, for fixed <span><math><mi>r</mi></math></span>, do not depend on <span><math><mi>p</mi></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723001064/pdfft?md5=ea710133f3e4e343c282392434c744c9&pid=1-s2.0-S0019357723001064-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723001064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many interesting combinatorial sequences, such as Apéry numbers and Franel numbers, enjoy the so-called Lucas property modulo almost all primes p. Modulo prime powers pr such sequences have a more complicated behaviour which can be described by matrix versions of the Lucas property called p-linear schemes. They are generalizations of finite p-automata. In this paper we construct such p-linear schemes and give upper bounds for the number of states which, for fixed r, do not depend on p.

分享
查看原文
序列模数 pr 的 p 线性方案
许多有趣的组合序列,如apry数和Franel数,享有所谓的卢卡斯性质,对几乎所有素数p取模。模素数幂pr这样的序列具有更复杂的行为,可以用卢卡斯性质的矩阵版本描述,称为p-线性格式。它们是有限p自动机的推广。本文构造了这样的p-线性格式,并给出了对于固定r不依赖于p的状态数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信