{"title":"On Temperature of Working Fluid Supply to Combustion Chamber in CO2 Power Cycles with Oxy-Combustion of Methane","authors":"I. S. Sadkin, E. M. Korepanova, P. A. Shchinnikov","doi":"10.1134/S1810232823040136","DOIUrl":null,"url":null,"abstract":"<p>The article addresses the thermodynamic issues of supercritical CO<sub>2</sub> power cycles at combustion of methane with oxygen. By the example of cycle with single-stage pump pressure rise with condensation of the working fluid, we consider the issue of ensuring the temperature of the working fluid supplied to the combustion chamber and the value of the theoretical specific heat flux into the regenerative system of cycle for a wide range of initial parameters at the turbine inlet. It has been shown that, depending on the pressure, the heat flux into the regenerative system is 700–1000 kJ/kgCO<sub>2</sub> when an initial temperature of 1000°C is provided, and its fraction in the total heat transfer to the working fluid is 0.5–0.6 in the zone of operational initial parameters. It has been determined that for the cycle efficiency to be high, the temperature of the working fluid supplied to the combustion chamber in the regenerative heat exchanger should be at least <span>\\(\\sim 2/3\\)</span> of the temperature at its outlet.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"32 4","pages":"816 - 823"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232823040136","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The article addresses the thermodynamic issues of supercritical CO2 power cycles at combustion of methane with oxygen. By the example of cycle with single-stage pump pressure rise with condensation of the working fluid, we consider the issue of ensuring the temperature of the working fluid supplied to the combustion chamber and the value of the theoretical specific heat flux into the regenerative system of cycle for a wide range of initial parameters at the turbine inlet. It has been shown that, depending on the pressure, the heat flux into the regenerative system is 700–1000 kJ/kgCO2 when an initial temperature of 1000°C is provided, and its fraction in the total heat transfer to the working fluid is 0.5–0.6 in the zone of operational initial parameters. It has been determined that for the cycle efficiency to be high, the temperature of the working fluid supplied to the combustion chamber in the regenerative heat exchanger should be at least \(\sim 2/3\) of the temperature at its outlet.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.