{"title":"Investigation of the Thermoelastic Behaviour of Magneto-Thermo-Viscoelastic Rods Based on the Kelvin-Voigt Viscoelastic Model","authors":"Jia Zhang, Yongbin Ma","doi":"10.1007/s40997-023-00736-9","DOIUrl":null,"url":null,"abstract":"<p>In the classical linear viscoelastic framework, materials exhibit more significant creep and stress relaxation at high temperatures, making thermoviscoelastic analyses of materials essential in the design of some polymers. In this paper, a new generalized thermo-viscoelastic model is developed by introducing the Kelvin-Voigt theory of viscoelasticity, and the transient response of an elastic rod under the action of a magnetic field and a moving heat source is investigated in the context of the three-phase lag heat conduction model and the Eringen nonlocal theory. The Kelvin-Voigt model is used to characterize the viscoelastic behaviour of the rod, and the analytical solution is obtained by the Laplace transform and its numerical inverse transform to show the distribution trends of temperature, displacement, and stress of the rod in a graphical way. The effects of time, moving heat source speed, delay time, memory-dependent effects, viscosity, nonlocal effects, and magnetic field on temperature, displacement, and stress are also discussed in detail.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"83 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00736-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the classical linear viscoelastic framework, materials exhibit more significant creep and stress relaxation at high temperatures, making thermoviscoelastic analyses of materials essential in the design of some polymers. In this paper, a new generalized thermo-viscoelastic model is developed by introducing the Kelvin-Voigt theory of viscoelasticity, and the transient response of an elastic rod under the action of a magnetic field and a moving heat source is investigated in the context of the three-phase lag heat conduction model and the Eringen nonlocal theory. The Kelvin-Voigt model is used to characterize the viscoelastic behaviour of the rod, and the analytical solution is obtained by the Laplace transform and its numerical inverse transform to show the distribution trends of temperature, displacement, and stress of the rod in a graphical way. The effects of time, moving heat source speed, delay time, memory-dependent effects, viscosity, nonlocal effects, and magnetic field on temperature, displacement, and stress are also discussed in detail.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.