P-associahedra

Pavel Galashin
{"title":"P-associahedra","authors":"Pavel Galashin","doi":"10.1007/s00029-023-00896-1","DOIUrl":null,"url":null,"abstract":"<p>For each poset <i>P</i>, we construct a polytope <span>\\({\\mathscr {A}}(P)\\)</span> called the <i>P</i>-<i>associahedron</i>. Similarly to the case of graph associahedra, the faces of <span>\\({\\mathscr {A}}(P)\\)</span> correspond to certain nested collections of subsets of <i>P</i>. The Stasheff associahedron is a compactification of the configuration space of <i>n</i> points on a line, and we recover <span>\\({\\mathscr {A}}(P)\\)</span> as an analogous compactification of the space of order-preserving maps <span>\\(P\\rightarrow {{\\mathbb {R}}}\\)</span>. Motivated by the study of totally nonnegative critical varieties in the Grassmannian, we introduce <i>affine poset cyclohedra</i> and realize these polytopes as compactifications of configuration spaces of <i>n</i> points on a circle. For particular choices of (affine) posets, we obtain associahedra, cyclohedra, permutohedra, and type <i>B</i> permutohedra as special cases.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00896-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For each poset P, we construct a polytope \({\mathscr {A}}(P)\) called the P-associahedron. Similarly to the case of graph associahedra, the faces of \({\mathscr {A}}(P)\) correspond to certain nested collections of subsets of P. The Stasheff associahedron is a compactification of the configuration space of n points on a line, and we recover \({\mathscr {A}}(P)\) as an analogous compactification of the space of order-preserving maps \(P\rightarrow {{\mathbb {R}}}\). Motivated by the study of totally nonnegative critical varieties in the Grassmannian, we introduce affine poset cyclohedra and realize these polytopes as compactifications of configuration spaces of n points on a circle. For particular choices of (affine) posets, we obtain associahedra, cyclohedra, permutohedra, and type B permutohedra as special cases.

Abstract Image

P-assochedra
对于每个偏序集P,我们构造一个多面体\({\mathscr {A}}(P)\),称为P-共轭面体。与图关联面体的情况类似,\({\mathscr {A}}(P)\)的面对应于p的子集的某些嵌套集合。Stasheff关联面体是一条线上n个点的位形空间的紧化,并且我们将\({\mathscr {A}}(P)\)恢复为保序映射空间\(P\rightarrow {{\mathbb {R}}}\)的类似紧化。在研究格拉斯曼完全非负临界变异体的基础上,引入仿射偏置环面体,并将其实现为圆上n个点的位形空间的紧化。对于(仿射)偏置集的特殊选择,我们得到了结合面体、环面体、复面体和B型复面体作为特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信