H∞ dynamic observer design for a class of Lipschitz nonlinear discrete-time systems with time varying delays

Ghali Naami, Mohamed Ouahi
{"title":"H∞ dynamic observer design for a class of Lipschitz nonlinear discrete-time systems with time varying delays","authors":"Ghali Naami, Mohamed Ouahi","doi":"10.1002/oca.3081","DOIUrl":null,"url":null,"abstract":"This study explores the development of <mjx-container aria-label=\"Menu available. Press control and space , or space\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/oca3081-math-0003.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper H Subscript infinity\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.057em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:oca:media:oca3081:oca3081-math-0003\" display=\"inline\" location=\"graphic/oca3081-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper H Subscript infinity\" data-semantic-type=\"subscript\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi></mrow><mrow><mi data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">∞</mi></mrow></msub></mrow>$$ {H}_{\\infty } $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> dynamic observer (HDO) for discrete-time nonlinear systems (DTNLS) with time-varying delay (TVD) and disturbances. The approach is to construct an augmented Lyapunov–Krasovskii function (LKF) with double summation terms, using the generalized reciprocally convex matrix inequality (GRCMI), as well as the Jensen-based inequality (JBI) and the Wirtinger-based inequality (WBI). These lead to less conservative time-dependent conditions, represented as a set of linear matrix inequalities (LMIs) that can be efficiently solved using the LMI or YALMIP toolboxes. In addition, the proposed observer includes the widely used proportional observer (PO) and proportional integral observer (PIO) as specific cases. Two examples are presented to demonstrate the validity and effectiveness of the results.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the development of  dynamic observer (HDO) for discrete-time nonlinear systems (DTNLS) with time-varying delay (TVD) and disturbances. The approach is to construct an augmented Lyapunov–Krasovskii function (LKF) with double summation terms, using the generalized reciprocally convex matrix inequality (GRCMI), as well as the Jensen-based inequality (JBI) and the Wirtinger-based inequality (WBI). These lead to less conservative time-dependent conditions, represented as a set of linear matrix inequalities (LMIs) that can be efficiently solved using the LMI or YALMIP toolboxes. In addition, the proposed observer includes the widely used proportional observer (PO) and proportional integral observer (PIO) as specific cases. Two examples are presented to demonstrate the validity and effectiveness of the results.

Abstract Image

一类具有时变延迟的 Lipschitz 非线性离散时间系统的 H∞ 动态观测器设计
本研究探讨具有时变延迟(TVD)和干扰的离散非线性系统(DTNLS)的H∞$$ {H}_{\infty } $$动态观测器(HDO)的发展。该方法是利用广义互凸矩阵不等式(GRCMI)以及基于jensen不等式(JBI)和基于WBI的wwinger不等式(WBI)构造具有双求和项的增广Lyapunov-Krasovskii函数(LKF)。这导致保守性较低的时间依赖条件,表示为一组线性矩阵不等式(LMI),可以使用LMI或YALMIP工具箱有效地求解。此外,所提出的观测器还包括广泛使用的比例观测器(PO)和比例积分观测器(PIO)作为具体案例。通过两个算例验证了所得结果的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信