On periodic solutions and attractors for the Maxwell--Bloch equations

Alexander Komech
{"title":"On periodic solutions and attractors for the Maxwell--Bloch equations","authors":"Alexander Komech","doi":"arxiv-2312.08180","DOIUrl":null,"url":null,"abstract":"We consider the Maxwell-Bloch system which is a finite-dimensional\napproximation of the coupled nonlinear Maxwell-Schr\\\"odinger equations. The\napproximation consists of one-mode Maxwell field coupled to two-level molecule.\nWe construct time-periodic solutions to the factordynamics which is due to the\nsymmetry gauge group. For the corresponding solutions to the Maxwell--Bloch\nsystem, the Maxwell field, current and inversion are time-periodic, while the\nwave function acquires a unit factor in the period. The proofs rely on\nhigh-amplitude asymptotics of the Maxwell field and a development of suitable\nmethods of differential topology: the transversality and orientation arguments.\nWe also prove the existence of the global compact attractor.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.08180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Maxwell-Bloch system which is a finite-dimensional approximation of the coupled nonlinear Maxwell-Schr\"odinger equations. The approximation consists of one-mode Maxwell field coupled to two-level molecule. We construct time-periodic solutions to the factordynamics which is due to the symmetry gauge group. For the corresponding solutions to the Maxwell--Bloch system, the Maxwell field, current and inversion are time-periodic, while the wave function acquires a unit factor in the period. The proofs rely on high-amplitude asymptotics of the Maxwell field and a development of suitable methods of differential topology: the transversality and orientation arguments. We also prove the existence of the global compact attractor.
论麦克斯韦-布洛赫方程的周期解和吸引子
我们考虑麦克斯韦-布洛赫系统,它是耦合非线性麦克斯韦-薛定谔方程的有限维近似。近似由单模麦克斯韦场耦合到两能级分子组成。构造了由对称规群引起的因子动力学的时间周期解。对于Maxwell—Blochsystem的对应解,Maxwell场、电流和反演都是时间周期的,而波函数在周期内获得一个单位因子。这些证明依赖于麦克斯韦场的高振幅渐近性和微分拓扑的合适方法的发展:横向和方向论证。我们还证明了全局紧吸引子的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信