Hydrodynamic Navier-Stokes equations in two-dimensional systems with Rashba spin-orbit coupling

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, APPLIED
Edvin G. Idrisov, Eddwi H. Hasdeo, Byjesh N. Radhakrishnan, Thomas L. Schmidt
{"title":"Hydrodynamic Navier-Stokes equations in two-dimensional systems with Rashba spin-orbit coupling","authors":"Edvin G. Idrisov, Eddwi H. Hasdeo, Byjesh N. Radhakrishnan, Thomas L. Schmidt","doi":"10.1063/10.0022364","DOIUrl":null,"url":null,"abstract":"We study a two-dimensional (2D) electron system with a linear spectrum in the presence of Rashba spin-orbit (RSO) coupling in the hydrodynamic regime. We derive a semiclassical Boltzmann equation with a collision integral due to Coulomb interactions on the basis of the eigenstates of the system with RSO coupling. Using the local equilibrium distribution functions, we obtain a generalized hydrodynamic Navier–Stokes equation for electronic systems with RSO coupling. In particular, we discuss the influence of the spin-orbit coupling on the viscosity and the enthalpy of the system and present some of its observable effects in hydrodynamic transport.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0022364","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study a two-dimensional (2D) electron system with a linear spectrum in the presence of Rashba spin-orbit (RSO) coupling in the hydrodynamic regime. We derive a semiclassical Boltzmann equation with a collision integral due to Coulomb interactions on the basis of the eigenstates of the system with RSO coupling. Using the local equilibrium distribution functions, we obtain a generalized hydrodynamic Navier–Stokes equation for electronic systems with RSO coupling. In particular, we discuss the influence of the spin-orbit coupling on the viscosity and the enthalpy of the system and present some of its observable effects in hydrodynamic transport.
具有拉什巴自旋轨道耦合的二维系统中的水动力学纳维-斯托克斯方程
本文研究了流体力学中存在Rashba自旋-轨道耦合时具有线性谱的二维电子系统。在具有RSO耦合的系统的本征态的基础上,导出了具有库仑相互作用的碰撞积分的半经典玻尔兹曼方程。利用局部平衡分布函数,得到了具有RSO耦合的电子系统的广义流体力学Navier-Stokes方程。特别地,我们讨论了自旋轨道耦合对系统粘度和焓的影响,并给出了它在流体动力输运中的一些可观察到的效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Low Temperature Physics
Low Temperature Physics 物理-物理:应用
CiteScore
1.20
自引率
25.00%
发文量
138
审稿时长
3 months
期刊介绍: Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies. Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信