{"title":"Variational inequalities arising from credit rating migration with buffer zone","authors":"Xinfu Chen, Jin Liang","doi":"10.1017/s095679252300030x","DOIUrl":null,"url":null,"abstract":"<p>In Chen and Liang previous work, a model, together with its well-posedness, was established for credit rating migrations with different upgrade and downgrade thresholds (i.e. a buffer zone, also called dead band in engineering). When positive dividends are introduced, the model in Chen and Liang (<span>SIAM Financ. Math.</span> 12, 941–966, 2021) may not be well-posed. Here, in this paper, a new model is proposed to include the realistic nonzero dividend scenarios. The key feature of the new model is that partial differential equations in Chen and Liang (<span>SIAM Financ. Math.</span> 12, 941–966, 2021) are replaced by variational inequalities, thereby creating a new free boundary, besides the original upgrading and downgrading free boundaries. Well-posedness of the new model, together with a few financially meaningful properties, is established. In particular, it is shown that when time to debt paying deadline is long enough, the underlying dividend paying company is always in high grade rating, that is, only when time to debt paying deadline is within a certain range, there can be seen the phenomenon of credit rating migration.</p>","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"221 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s095679252300030x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In Chen and Liang previous work, a model, together with its well-posedness, was established for credit rating migrations with different upgrade and downgrade thresholds (i.e. a buffer zone, also called dead band in engineering). When positive dividends are introduced, the model in Chen and Liang (SIAM Financ. Math. 12, 941–966, 2021) may not be well-posed. Here, in this paper, a new model is proposed to include the realistic nonzero dividend scenarios. The key feature of the new model is that partial differential equations in Chen and Liang (SIAM Financ. Math. 12, 941–966, 2021) are replaced by variational inequalities, thereby creating a new free boundary, besides the original upgrading and downgrading free boundaries. Well-posedness of the new model, together with a few financially meaningful properties, is established. In particular, it is shown that when time to debt paying deadline is long enough, the underlying dividend paying company is always in high grade rating, that is, only when time to debt paying deadline is within a certain range, there can be seen the phenomenon of credit rating migration.
期刊介绍:
Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.