A Computational Chemistry Investigation of the Influence of Steric Bulk of Dithiocarbamato-Bound Organic Substituents upon Spodium Bonding in Three Homoleptic Mercury(II) Bis(N,N-dialkyldithiocarbamato) Compounds for Alkyl = Ethyl, Isobutyl, and Cyclohexyl
{"title":"A Computational Chemistry Investigation of the Influence of Steric Bulk of Dithiocarbamato-Bound Organic Substituents upon Spodium Bonding in Three Homoleptic Mercury(II) Bis(N,N-dialkyldithiocarbamato) Compounds for Alkyl = Ethyl, Isobutyl, and Cyclohexyl","authors":"R. Gomila, E. R. Tiekink, A. Frontera","doi":"10.3390/inorganics11120468","DOIUrl":null,"url":null,"abstract":"Three homoleptic Hg(S2CNR2)2, for R = ethyl (1), isobutyl (2), and cyclohexyl (3), compounds apparently exhibit a steric-dependent supramolecular association in their crystals. The small group in 1 allows for dimer formation via covalent Hg–S interactions through an eight-membered {–HgSCS}2 ring as the dithiocarbamato ligands bridge centrosymmetrically related Hg atoms; intradimer Hg···S interactions are noted. By contrast, centrosymmetrically related molecules in 2 are aligned to enable intermolecular Hg···S interactions, but the separations greatly exceed the van der Waals radii. The large group in 3 precludes both dimerization and intermolecular Hg···S interactions. Computational chemistry indicates that the potential region at the Hg atom is highly dependent on the coordination geometry about the Hg atom. Intramolecular (1) and intermolecular (2) spodium bonding (SpB) is demonstrated. Even at separations approaching 0.4 Å beyond the sum of the assumed van der Waals radii, the energy of the stabilization afforded by the structure directs SpB in 2 amounts to approximately 2.5 kcal/mol. A natural bond orbital (NBO) analysis points to the importance of the LP(S) → σ*(Hg–S) charge transfer and to the dominance of the dispersion forces and electron correlation to the SpB in 2.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":"4 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11120468","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Three homoleptic Hg(S2CNR2)2, for R = ethyl (1), isobutyl (2), and cyclohexyl (3), compounds apparently exhibit a steric-dependent supramolecular association in their crystals. The small group in 1 allows for dimer formation via covalent Hg–S interactions through an eight-membered {–HgSCS}2 ring as the dithiocarbamato ligands bridge centrosymmetrically related Hg atoms; intradimer Hg···S interactions are noted. By contrast, centrosymmetrically related molecules in 2 are aligned to enable intermolecular Hg···S interactions, but the separations greatly exceed the van der Waals radii. The large group in 3 precludes both dimerization and intermolecular Hg···S interactions. Computational chemistry indicates that the potential region at the Hg atom is highly dependent on the coordination geometry about the Hg atom. Intramolecular (1) and intermolecular (2) spodium bonding (SpB) is demonstrated. Even at separations approaching 0.4 Å beyond the sum of the assumed van der Waals radii, the energy of the stabilization afforded by the structure directs SpB in 2 amounts to approximately 2.5 kcal/mol. A natural bond orbital (NBO) analysis points to the importance of the LP(S) → σ*(Hg–S) charge transfer and to the dominance of the dispersion forces and electron correlation to the SpB in 2.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD