{"title":"Exponential Local Fisher Discriminant Analysis with Sparse Variables Selection: A Novel Fault Diagnosis Scheme for Industry Application","authors":"Zhengping Ding, Yingcheng Xu, Kai Zhong","doi":"10.3390/machines11121066","DOIUrl":null,"url":null,"abstract":"Local Fisher discriminant analysis (LFDA) has been widely applied to dimensionality reduction and fault classification fields. However, it often suffers from small sample size (SSS) problem and incorporates all process variables without emphasizing the key faulty ones, thus leading to degraded fault diagnosis performance and poor model interpretability. To this end, this paper develops the sparse variables selection based exponential local Fisher discriminant analysis (SELFDA) model, which can overcome the two limitations of basic LFDA concurrently. First, the responsible faulty variables are identified automatically through the least absolute shrinkage and selection operator, and the current optimization problem are subsequently recast as an iterative convex optimization problem and solved by the minimization-maximization method. After that, the matrix exponential strategy is implemented on LFDA, it can essentially overcome the SSS problem by ensuring that the within-class scatter matrix is always full-rank, thus more practical in real industrial practices, and the margin between different categories is enlarged due to the distance diffusion mapping, which is benefit for the enhancement of classification accuracy. Finally, the Tennessee Eastman process and a real-world diesel working process are employed to validate the proposed SELFDA method, experimental results prove that the SELFDA framework is more excellent than the other approaches.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"52 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121066","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Local Fisher discriminant analysis (LFDA) has been widely applied to dimensionality reduction and fault classification fields. However, it often suffers from small sample size (SSS) problem and incorporates all process variables without emphasizing the key faulty ones, thus leading to degraded fault diagnosis performance and poor model interpretability. To this end, this paper develops the sparse variables selection based exponential local Fisher discriminant analysis (SELFDA) model, which can overcome the two limitations of basic LFDA concurrently. First, the responsible faulty variables are identified automatically through the least absolute shrinkage and selection operator, and the current optimization problem are subsequently recast as an iterative convex optimization problem and solved by the minimization-maximization method. After that, the matrix exponential strategy is implemented on LFDA, it can essentially overcome the SSS problem by ensuring that the within-class scatter matrix is always full-rank, thus more practical in real industrial practices, and the margin between different categories is enlarged due to the distance diffusion mapping, which is benefit for the enhancement of classification accuracy. Finally, the Tennessee Eastman process and a real-world diesel working process are employed to validate the proposed SELFDA method, experimental results prove that the SELFDA framework is more excellent than the other approaches.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.