A modified Aquila optimizer algorithm for optimization energy-efficient no-idle permutation flow shop scheduling problem

D. M. Utama, Nabilah Sanafa
{"title":"A modified Aquila optimizer algorithm for optimization energy-efficient no-idle permutation flow shop scheduling problem","authors":"D. M. Utama, Nabilah Sanafa","doi":"10.30656/jsmi.v7i2.6446","DOIUrl":null,"url":null,"abstract":"Increasing energy consumption has faced challenges and pressures for modern manufacturing operations. The production sector accounts for half of the world's total energy consumption. Reducing idle machine time by em­ploying No-Idle Permutation Flow Shop Scheduling (NIPFSP) is one of the best decisions for reducing energy consumption. This article modifies one of the energy consumption-solving algorithms,  the Aquila Optimizer (AO) algo­rithm. This research contributes by 1) proposing novel AO procedures for solving energy consumption problems with NIPFSP and 2) expanding the literature on metaheuristic algorithms that can solve energy consumption problems with NIPFSP. To analyze whether the AO algorithm is optimal, we compared by using the Grey Wolf Optimizer (GWO) algorithm. It com­pares these two algorithms to tackle the problem of energy consumption by testing four distinct problems. Comparison of the AO and GWO algorithm is thirty times for each case for each population and iteration. The outcome of comparing the two algorithms is using a t-test on independent samples and ECR. In all case studies, the results demonstrate that the AO algorithm has a lower energy consumption value than GWO. The AO algorithm is there­fore recommended for minimizing energy consumption because it can produce more optimal results than the comparison algorithm.","PeriodicalId":53057,"journal":{"name":"Jurnal Sistem dan Manajemen Industri","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem dan Manajemen Industri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30656/jsmi.v7i2.6446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing energy consumption has faced challenges and pressures for modern manufacturing operations. The production sector accounts for half of the world's total energy consumption. Reducing idle machine time by em­ploying No-Idle Permutation Flow Shop Scheduling (NIPFSP) is one of the best decisions for reducing energy consumption. This article modifies one of the energy consumption-solving algorithms,  the Aquila Optimizer (AO) algo­rithm. This research contributes by 1) proposing novel AO procedures for solving energy consumption problems with NIPFSP and 2) expanding the literature on metaheuristic algorithms that can solve energy consumption problems with NIPFSP. To analyze whether the AO algorithm is optimal, we compared by using the Grey Wolf Optimizer (GWO) algorithm. It com­pares these two algorithms to tackle the problem of energy consumption by testing four distinct problems. Comparison of the AO and GWO algorithm is thirty times for each case for each population and iteration. The outcome of comparing the two algorithms is using a t-test on independent samples and ECR. In all case studies, the results demonstrate that the AO algorithm has a lower energy consumption value than GWO. The AO algorithm is there­fore recommended for minimizing energy consumption because it can produce more optimal results than the comparison algorithm.
优化高能效无空闲排列流动车间调度问题的改进型 Aquila 优化算法
能源消耗的增加给现代制造业带来了挑战和压力。生产部门占世界总能源消耗的一半。采用无空闲置换流水车间调度(NIPFSP)来减少机器空闲时间是降低能耗的最佳决策之一。本文对能量消耗求解算法之一Aquila Optimizer (AO)算法进行了改进。本研究的贡献在于:1)提出了求解NIPFSP能源消耗问题的新颖AO程序;2)扩展了求解NIPFSP能源消耗问题的元启发式算法的文献。为了分析AO算法是否最优,我们与灰狼优化器(GWO)算法进行了比较。它通过测试四个不同的问题来比较这两种算法来解决能源消耗问题。对于每个种群和迭代,AO算法和GWO算法在每种情况下的比较次数为30次。比较两种算法的结果是使用独立样本和ECR的t检验。在所有的案例研究中,结果表明AO算法比GWO算法具有更低的能耗值。因此,AO算法被推荐用于最小化能耗,因为它可以产生比比较算法更优的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信