{"title":"Development of composite materials using recycled high-density polyethylene plastic for railway sleepers","authors":"Dingyi Zhang, Cheng Gao, Xiangyang Hao, Guoqing Jing, Xianmei Zhang, Yueyang Wu, Xinjie Li","doi":"10.1680/jemmr.23.00050","DOIUrl":null,"url":null,"abstract":"Given the substantial increase in railway load, speed, and traffic, there is a notable demand for materials with high durability, long life, and good damping. Such materials can be realized through composite materials that contain recycled high-density polyethylene, polypropylene, mica, glass fiber, and compatibilizer. In this study, the extruded pellets, which contain the aforementioned materials and are produced via a twin-screw extruder, were utilized to assess their mechanical performances and microstructures. Composite materials containing 62.5% glass fiber and 20% polypropylene (PP) demonstrated remarkable performance for manufacturing sleepers. The addition of 62.5% glass fiber in composite materials containing PP enhanced the flexural strength, flexural modulus, tensile strength, compressive strength, and hardness by 315%, 623%, 296%, and 40%, respectively, as compared to the original composite materials containing PP without glass fiber. Furthermore, the incorporation of glass fiber and the subsequent improvements met the requirements stipulated by the Ministry of Housing and Urban-Rural Development of the People’s Republic of China and ISO standards. This favorable result can be attributed to the good compatibility between the matrix and the glass fiber, as noted from the uniform distribution of glass fiber in the resin matrix in scanning electron microscopy (SEM) images. The findings of this study highlight the potential of utilizing recycled materials in rail track manufacturing applications.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":"36 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.23.00050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the substantial increase in railway load, speed, and traffic, there is a notable demand for materials with high durability, long life, and good damping. Such materials can be realized through composite materials that contain recycled high-density polyethylene, polypropylene, mica, glass fiber, and compatibilizer. In this study, the extruded pellets, which contain the aforementioned materials and are produced via a twin-screw extruder, were utilized to assess their mechanical performances and microstructures. Composite materials containing 62.5% glass fiber and 20% polypropylene (PP) demonstrated remarkable performance for manufacturing sleepers. The addition of 62.5% glass fiber in composite materials containing PP enhanced the flexural strength, flexural modulus, tensile strength, compressive strength, and hardness by 315%, 623%, 296%, and 40%, respectively, as compared to the original composite materials containing PP without glass fiber. Furthermore, the incorporation of glass fiber and the subsequent improvements met the requirements stipulated by the Ministry of Housing and Urban-Rural Development of the People’s Republic of China and ISO standards. This favorable result can be attributed to the good compatibility between the matrix and the glass fiber, as noted from the uniform distribution of glass fiber in the resin matrix in scanning electron microscopy (SEM) images. The findings of this study highlight the potential of utilizing recycled materials in rail track manufacturing applications.
期刊介绍:
Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.