Low-Cost Multisensory Robot for Optimized Path Planning in Diverse Environments

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Rohit Mittal, Geeta Rani, Vibhakar Pathak, Sonam Chhikara, V. Dhaka, E. Vocaturo, Ester Zumpano
{"title":"Low-Cost Multisensory Robot for Optimized Path Planning in Diverse Environments","authors":"Rohit Mittal, Geeta Rani, Vibhakar Pathak, Sonam Chhikara, V. Dhaka, E. Vocaturo, Ester Zumpano","doi":"10.3390/computers12120250","DOIUrl":null,"url":null,"abstract":"The automation industry faces the challenge of avoiding interference with obstacles, estimating the next move of a robot, and optimizing its path in various environments. Although researchers have predicted the next move of a robot in linear and non-linear environments, there is a lack of precise estimation of sectorial error probability while moving a robot on a curvy path. Additionally, existing approaches use visual sensors, incur high costs for robot design, and ineffective in achieving motion stability on various surfaces. To address these issues, the authors in this manuscript propose a low-cost and multisensory robot capable of moving on an optimized path in diverse environments with eight degrees of freedom. The authors use the extended Kalman filter and unscented Kalman filter for localization and position estimation of the robot. They also compare the sectorial path prediction error at different angles from 0° to 180° and demonstrate the mathematical modeling of various operations involved in navigating the robot. The minimum deviation of 1.125 cm between the actual and predicted path proves the effectiveness of the robot in a real-life environment.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"53 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12120250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The automation industry faces the challenge of avoiding interference with obstacles, estimating the next move of a robot, and optimizing its path in various environments. Although researchers have predicted the next move of a robot in linear and non-linear environments, there is a lack of precise estimation of sectorial error probability while moving a robot on a curvy path. Additionally, existing approaches use visual sensors, incur high costs for robot design, and ineffective in achieving motion stability on various surfaces. To address these issues, the authors in this manuscript propose a low-cost and multisensory robot capable of moving on an optimized path in diverse environments with eight degrees of freedom. The authors use the extended Kalman filter and unscented Kalman filter for localization and position estimation of the robot. They also compare the sectorial path prediction error at different angles from 0° to 180° and demonstrate the mathematical modeling of various operations involved in navigating the robot. The minimum deviation of 1.125 cm between the actual and predicted path proves the effectiveness of the robot in a real-life environment.
用于在不同环境中优化路径规划的低成本多感知机器人
自动化行业面临的挑战是避免障碍物的干扰,估计机器人的下一步行动,并在各种环境中优化其路径。虽然研究人员已经预测了机器人在线性和非线性环境下的下一步移动,但缺乏对机器人在曲线路径上移动时的扇形误差概率的精确估计。此外,现有的方法使用视觉传感器,导致机器人设计成本高,并且无法在各种表面上实现运动稳定性。为了解决这些问题,本文的作者提出了一种低成本的多感官机器人,能够在不同的环境中以优化的路径移动,具有八个自由度。作者采用扩展卡尔曼滤波和无气味卡尔曼滤波对机器人进行定位和位置估计。他们还比较了从0°到180°不同角度的扇形路径预测误差,并演示了导航机器人所涉及的各种操作的数学建模。实际路径与预测路径之间的最小偏差为1.125 cm,证明了机器人在现实环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信