{"title":"Aerovalved Pulse Combustor for Enhancing Efficiency and Sustainability of Fossil Energy Conversion","authors":"I. Smajević, Kemal Hanjalić","doi":"10.2478/bhee-2023-0018","DOIUrl":null,"url":null,"abstract":"Abstract The paper actualizes earlier research in developing a pulse combustion technique for enhancing the efficacy of utility and industrial boilers and furnaces. Some unpublished results of the experimental investigation of self-sustained pulsating combustion of a gas fuel in an aerovalved pulse combustor (PC) are presented. Relationships have been established between all important design and operating parameters and the combustion characteristics. It was demonstrated that a well-designed pulse combustor can operate efficiently in a stable self-pumping regime in a wide range of operating conditions with the loading from 20% to 100% of the maximum power. While a PC can operate autonomously as a gas burner, the present focus is on their use for mitigating slug and ash deposits on heating surfaces of coal- or biomass fired power and industrial boilers, thus providing an alternative to the proven detonation pulse (DPC) or other techniques for on-line cleaning of heating surfaces during the operation of power and industrial boilers.","PeriodicalId":236883,"journal":{"name":"B&H Electrical Engineering","volume":"7 12","pages":"53 - 60"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"B&H Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bhee-2023-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper actualizes earlier research in developing a pulse combustion technique for enhancing the efficacy of utility and industrial boilers and furnaces. Some unpublished results of the experimental investigation of self-sustained pulsating combustion of a gas fuel in an aerovalved pulse combustor (PC) are presented. Relationships have been established between all important design and operating parameters and the combustion characteristics. It was demonstrated that a well-designed pulse combustor can operate efficiently in a stable self-pumping regime in a wide range of operating conditions with the loading from 20% to 100% of the maximum power. While a PC can operate autonomously as a gas burner, the present focus is on their use for mitigating slug and ash deposits on heating surfaces of coal- or biomass fired power and industrial boilers, thus providing an alternative to the proven detonation pulse (DPC) or other techniques for on-line cleaning of heating surfaces during the operation of power and industrial boilers.