An Intra- and Inter-Modality Fusion Model with Invariant- and Specific-Constraints Using MR Images for Prediction of Glioma Isocitrate Dehydrogenase Mutation Status
{"title":"An Intra- and Inter-Modality Fusion Model with Invariant- and Specific-Constraints Using MR Images for Prediction of Glioma Isocitrate Dehydrogenase Mutation Status","authors":"Xiaoyu Shi, Yinhao Li, Yen-wei Chen, Jingliang Cheng, J. Bai, Guohua Zhao","doi":"10.18178/joig.11.4.321-329","DOIUrl":null,"url":null,"abstract":"In the 2021 World Health Organization classification of gliomas, it is proposed that Isocitrate Dehydrogenase (IDH) plays a key role. The prognosis of glioma is largely affected by IDH mutation status. Therefore, IDH mutation status needs to be predicted in advance before surgery. In the past decade, with the development of machine learning, more and more machine learning methods, especially deep learning methods, have been applied to the development of computer-aided diagnosis systems. At present, in this field, many deep learning and radiomics based methods have been proposed for IDH prediction using multimodal Magnetic Resonance Imaging (MRI). In this study, we proposed an intra- and inter-modality fusion model with invariant- and specific- constraints to improve the performance of IDH status prediction. First, MRI-based radiomics features were fused with deep learning features in each modality (intra-modality fusion) and then the features extracted from each modality of brain MRI were fused by using an inter-modality fusion model with invariant and specific constraints. We experimented our proposed method on the dataset provided by the Affiliated Hospital of Zhengzhou University in Zhengzhou, China and demonstrated the effectiveness of the proposed method. In our study, we propose two inter-modality fusion models, and our experimental results show that our best proposed method outperformed state-of-the-art methods with an accuracy of 0.79, precision of 0.80, recall of 0.75, and F1 score of 0.78. Thus, we predicted the IDH mutation status for glioma treatment with a 2% increase in accuracy and 4% increase in precision to predict the IDH mutation status for glioma treatment.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"5 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.4.321-329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
In the 2021 World Health Organization classification of gliomas, it is proposed that Isocitrate Dehydrogenase (IDH) plays a key role. The prognosis of glioma is largely affected by IDH mutation status. Therefore, IDH mutation status needs to be predicted in advance before surgery. In the past decade, with the development of machine learning, more and more machine learning methods, especially deep learning methods, have been applied to the development of computer-aided diagnosis systems. At present, in this field, many deep learning and radiomics based methods have been proposed for IDH prediction using multimodal Magnetic Resonance Imaging (MRI). In this study, we proposed an intra- and inter-modality fusion model with invariant- and specific- constraints to improve the performance of IDH status prediction. First, MRI-based radiomics features were fused with deep learning features in each modality (intra-modality fusion) and then the features extracted from each modality of brain MRI were fused by using an inter-modality fusion model with invariant and specific constraints. We experimented our proposed method on the dataset provided by the Affiliated Hospital of Zhengzhou University in Zhengzhou, China and demonstrated the effectiveness of the proposed method. In our study, we propose two inter-modality fusion models, and our experimental results show that our best proposed method outperformed state-of-the-art methods with an accuracy of 0.79, precision of 0.80, recall of 0.75, and F1 score of 0.78. Thus, we predicted the IDH mutation status for glioma treatment with a 2% increase in accuracy and 4% increase in precision to predict the IDH mutation status for glioma treatment.
中国图象图形学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍:
Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics.
Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art.
Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.