Examination of generalized Tribonacci dual quaternions

IF 0.3 Q4 MATHEMATICS
Zehra İşbilir, N. Gürses
{"title":"Examination of generalized Tribonacci dual quaternions","authors":"Zehra İşbilir, N. Gürses","doi":"10.12697/acutm.2023.27.17","DOIUrl":null,"url":null,"abstract":"This manuscript deals with introducing and discussing of a new type dual quaternions which are named generalized Tribonacci dual quaternions (GTDQ, for short). For this purpose, several new properties, such as Binet formula, generating function, exponential generating function, matrix formula, and determinant equations, are established. In addition to these, some numerical algorithms are constructed. In the last part, some special cases of the family of the GTDQ are examined regarding r, s, t values and initial values considering concluded results.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"37 4","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2023.27.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript deals with introducing and discussing of a new type dual quaternions which are named generalized Tribonacci dual quaternions (GTDQ, for short). For this purpose, several new properties, such as Binet formula, generating function, exponential generating function, matrix formula, and determinant equations, are established. In addition to these, some numerical algorithms are constructed. In the last part, some special cases of the family of the GTDQ are examined regarding r, s, t values and initial values considering concluded results.
对广义 Tribonacci 对偶四元数的研究
本文介绍并讨论了一类新的对偶四元数,即广义Tribonacci对偶四元数(简称GTDQ)。为此,建立了Binet公式、生成函数、指数生成函数、矩阵公式和行列式方程等新的性质。除此之外,还构造了一些数值算法。最后,结合已得到的结果,研究了GTDQ族的r、s、t值和初值的一些特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信