{"title":"Sequence-based malware detection using a single-bidirectional graph embedding and multi-task learning framework","authors":"Jiale Luo, Zhewngyu Zhang, Jiesi Luo, Pin Yang, Runyu Jing","doi":"10.3233/jcs-230041","DOIUrl":null,"url":null,"abstract":"As an important part of malware detection and classification, sequence-based analysis can be integrated into dynamic detection system for real-time detection. This work presents a novel learning method for malware detection models that leverages advances in graph embedding for fusing the n-gram data into a one-hot feature space with different transmission directions. By capturing the information flow, our method finds a better feature representation for detection tasks with rely solely on sequence information. To enhance the stability of feature representation, this work adopts a multi-task learning strategy which achieves better performance in independent testing. We evaluate our method on two different realworld datasets and compare it against four superior malware detection models. During malware detection using our method, we conducted in-depth discussions on feature length, graph embedding direction, model depth, and different multi-task learning strategies. Experimental and discussion results show that our method significantly outperforms alternative approaches across evaluation settings.","PeriodicalId":46074,"journal":{"name":"Journal of Computer Security","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcs-230041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As an important part of malware detection and classification, sequence-based analysis can be integrated into dynamic detection system for real-time detection. This work presents a novel learning method for malware detection models that leverages advances in graph embedding for fusing the n-gram data into a one-hot feature space with different transmission directions. By capturing the information flow, our method finds a better feature representation for detection tasks with rely solely on sequence information. To enhance the stability of feature representation, this work adopts a multi-task learning strategy which achieves better performance in independent testing. We evaluate our method on two different realworld datasets and compare it against four superior malware detection models. During malware detection using our method, we conducted in-depth discussions on feature length, graph embedding direction, model depth, and different multi-task learning strategies. Experimental and discussion results show that our method significantly outperforms alternative approaches across evaluation settings.
期刊介绍:
The Journal of Computer Security presents research and development results of lasting significance in the theory, design, implementation, analysis, and application of secure computer systems and networks. It will also provide a forum for ideas about the meaning and implications of security and privacy, particularly those with important consequences for the technical community. The Journal provides an opportunity to publish articles of greater depth and length than is possible in the proceedings of various existing conferences, while addressing an audience of researchers in computer security who can be assumed to have a more specialized background than the readership of other archival publications.