STICAP: Spatio-Temporal Interactive Attention for Citywide Crowd Activity Prediction

IF 1.2 Q4 REMOTE SENSING
Huiqun Huang, Suining He, Xi Yang, Mahan Tabatabaie
{"title":"STICAP: Spatio-Temporal Interactive Attention for Citywide Crowd Activity Prediction","authors":"Huiqun Huang, Suining He, Xi Yang, Mahan Tabatabaie","doi":"10.1145/3603375","DOIUrl":null,"url":null,"abstract":"Accurate citywide crowd activity prediction (CAP) can enable proactive crowd mobility management and timely responses to urban events, which has become increasingly important for a myriad of smart city planning and management purposes. However, complex correlations across the crowd activities, spatial and temporal urban environment features and their interactive dependencies, and relevant external factors (e.g., weather conditions) make it highly challenging to predict crowd activities accurately in terms of different venue categories (for instance, venues related to dining, services, and residence) and varying degrees (e.g., daytime and nighttime). To address the above concerns, we propose STICAP, a citywide spatio-temporal interactive crowd activity prediction approach. In particular, STICAP takes in the location-based social network check-in data (e.g., from Foursquare/Gowalla) as the model inputs, and forecasts the crowd activity within each time step for each venue category. Furthermore, we have integrated multiple levels of temporal discretization to interactively capture the relations with historical data. Then three parallel Residual Spatial Attention Networks (RSAN) in the Spatial Attention Component exploit the hourly, daily, and weekly spatial features of crowd activities, which are further fused and processed by the Temporal Attention Component for interactive CAP. Along with other external factors such as weather conditions and holidays, STICAP adaptively and accurately forecasts the final crowd activities per venue category, enabling potential activity recommendation and other smart city applications. Extensive experimental studies based on three different real-word crowd activity datasets have demonstrated that our proposed STICAP outperforms the baseline and state-of-the-art algorithms in CAP accuracy, with an average error reduction of 35.02%","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate citywide crowd activity prediction (CAP) can enable proactive crowd mobility management and timely responses to urban events, which has become increasingly important for a myriad of smart city planning and management purposes. However, complex correlations across the crowd activities, spatial and temporal urban environment features and their interactive dependencies, and relevant external factors (e.g., weather conditions) make it highly challenging to predict crowd activities accurately in terms of different venue categories (for instance, venues related to dining, services, and residence) and varying degrees (e.g., daytime and nighttime). To address the above concerns, we propose STICAP, a citywide spatio-temporal interactive crowd activity prediction approach. In particular, STICAP takes in the location-based social network check-in data (e.g., from Foursquare/Gowalla) as the model inputs, and forecasts the crowd activity within each time step for each venue category. Furthermore, we have integrated multiple levels of temporal discretization to interactively capture the relations with historical data. Then three parallel Residual Spatial Attention Networks (RSAN) in the Spatial Attention Component exploit the hourly, daily, and weekly spatial features of crowd activities, which are further fused and processed by the Temporal Attention Component for interactive CAP. Along with other external factors such as weather conditions and holidays, STICAP adaptively and accurately forecasts the final crowd activities per venue category, enabling potential activity recommendation and other smart city applications. Extensive experimental studies based on three different real-word crowd activity datasets have demonstrated that our proposed STICAP outperforms the baseline and state-of-the-art algorithms in CAP accuracy, with an average error reduction of 35.02%
STICAP:用于全城人群活动预测的时空互动注意力
准确的全市人群活动预测(CAP)可以实现前瞻性的人群流动管理和及时响应城市事件,这对于无数智慧城市规划和管理目的变得越来越重要。然而,人群活动之间的复杂相关性、城市环境的时空特征及其相互依赖关系,以及相关的外部因素(如天气条件),使得在不同的场地类别(如与餐饮、服务和居住相关的场地)和不同程度(如白天和夜间)上准确预测人群活动具有很高的挑战性。为了解决上述问题,我们提出了一种城市范围的时空互动人群活动预测方法——STICAP。特别是,STICAP将基于位置的社交网络签到数据(例如,来自Foursquare/Gowalla)作为模型输入,并预测每个场地类别在每个时间步内的人群活动。此外,我们还集成了多层次的时间离散化,以交互式地捕捉与历史数据的关系。然后,空间注意分量中的三个平行剩余空间注意网络(RSAN)利用人群活动的小时、日、周空间特征,再通过时间注意分量进行融合和处理,形成交互式CAP。STICAP与天气条件、节假日等外部因素一起,自适应准确预测每个场地类别的最终人群活动。支持潜在的活动推荐和其他智慧城市应用。基于三种不同的真实世界人群活动数据集的广泛实验研究表明,我们提出的STICAP在CAP精度方面优于基线和最先进的算法,平均误差降低35.02%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信