Mauricio da Silva Moreira, João Henrique C. Souza, C. E. M. Guilherme, Liércio André Isoldi
{"title":"Computational model validation of the rolled shapes calendering process","authors":"Mauricio da Silva Moreira, João Henrique C. Souza, C. E. M. Guilherme, Liércio André Isoldi","doi":"10.5902/2179460x74455","DOIUrl":null,"url":null,"abstract":"This paper presents the validation of computational model for the numerical simulating of the 3-roll calendering process. For this, a case study was carried out, considering a rolled I-form S235 steel profile subjected to vertical loads imposed by the calender rolls. Residual stress results obtained numerically were compared with experimental results found in the literature. The computational model was developed in ANSYS® software, which relies on the Finite Element Method (FEM), considering four different types of three-dimensional finite elements: SOLID185, SOLID186, SOLID187, and SOLID285. The results indicated that the computational model with SOLID186 presented stable mesh convergence, obtaining a discrepancy of -1.61% when compared to the experimental results, thus validating the proposed computational model.","PeriodicalId":348075,"journal":{"name":"Ciência e Natura","volume":" 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciência e Natura","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5902/2179460x74455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the validation of computational model for the numerical simulating of the 3-roll calendering process. For this, a case study was carried out, considering a rolled I-form S235 steel profile subjected to vertical loads imposed by the calender rolls. Residual stress results obtained numerically were compared with experimental results found in the literature. The computational model was developed in ANSYS® software, which relies on the Finite Element Method (FEM), considering four different types of three-dimensional finite elements: SOLID185, SOLID186, SOLID187, and SOLID285. The results indicated that the computational model with SOLID186 presented stable mesh convergence, obtaining a discrepancy of -1.61% when compared to the experimental results, thus validating the proposed computational model.