{"title":"Long-term deformation and damage analysis of marine clay around seawalls under coupled dynamic-seepage loading","authors":"Huayang Lei, Ziyang Qi, Shuangxi Feng","doi":"10.1080/1064119X.2022.2141161","DOIUrl":null,"url":null,"abstract":"Abstract The long-term deformation characteristics and damage degree of soft marine-deposited clay must be evaluated to safely design seawalls. According to abundant field evidence, soft marine-deposited clay tends to experience coupled dynamic loading and seepage loading. Determining the critical load and damage index for these complex loading conditions is imperative. With Tianjin marine-deposited clay as an example, we employed an improved cyclic triaxial instrument to analyse the cumulative plastic strain, water discharge and stress–strain relationship of the clay to understand its long-term deformation development. Based on shakedown theory, the critical cyclic stress ratio (CSR) was determined. A multi-factor damage variable method was proposed to evaluate the damage degree. Its comparison with a traditional mono-factor damage variable method illustrated that this method is effective for damage analyses of marine clay around seawalls under coupled dynamic-seepage loading.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/1064119X.2022.2141161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The long-term deformation characteristics and damage degree of soft marine-deposited clay must be evaluated to safely design seawalls. According to abundant field evidence, soft marine-deposited clay tends to experience coupled dynamic loading and seepage loading. Determining the critical load and damage index for these complex loading conditions is imperative. With Tianjin marine-deposited clay as an example, we employed an improved cyclic triaxial instrument to analyse the cumulative plastic strain, water discharge and stress–strain relationship of the clay to understand its long-term deformation development. Based on shakedown theory, the critical cyclic stress ratio (CSR) was determined. A multi-factor damage variable method was proposed to evaluate the damage degree. Its comparison with a traditional mono-factor damage variable method illustrated that this method is effective for damage analyses of marine clay around seawalls under coupled dynamic-seepage loading.