{"title":"The Generation Problem in Thompson Group 𝐹","authors":"Gili Golan Polak","doi":"10.1090/memo/1451","DOIUrl":null,"url":null,"abstract":"<p>We show that the generation problem in Thompson’s group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is decidable, i.e., there is an algorithm which decides if a finite set of elements of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> generates the whole <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The algorithm makes use of the Stallings <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-core of subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which can be defined in an analogous way to the Stallings core of subgroups of a finitely generated free group. Further study of the Stallings <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-core of subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> provides a solution to another algorithmic problem in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Namely, given a finitely generated subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, it is decidable if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> acts transitively on the set of finite dyadic fractions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Other applications of the study include the construction of new maximal subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of infinite index, among which, a maximal subgroup of infinite index which acts transitively on the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the construction of an elementary amenable subgroup of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which is maximal in a normal subgroup of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the generation problem in Thompson’s group FF is decidable, i.e., there is an algorithm which decides if a finite set of elements of FF generates the whole FF. The algorithm makes use of the Stallings 22-core of subgroups of FF, which can be defined in an analogous way to the Stallings core of subgroups of a finitely generated free group. Further study of the Stallings 22-core of subgroups of FF provides a solution to another algorithmic problem in FF. Namely, given a finitely generated subgroup HH of FF, it is decidable if HH acts transitively on the set of finite dyadic fractions D\mathcal D. Other applications of the study include the construction of new maximal subgroups of FF of infinite index, among which, a maximal subgroup of infinite index which acts transitively on the set D\mathcal D and the construction of an elementary amenable subgroup of FF which is maximal in a normal subgroup of FF.