Assessing Potential Heteroscedasticity in Psychological Data: A GAMLSS approach

Juan C. Correa, Thomas Kneib, R. Ospina, Julian Tejada, F. Marmolejo‐Ramos
{"title":"Assessing Potential Heteroscedasticity in Psychological Data: A GAMLSS approach","authors":"Juan C. Correa, Thomas Kneib, R. Ospina, Julian Tejada, F. Marmolejo‐Ramos","doi":"10.20982/tqmp.19.4.p333","DOIUrl":null,"url":null,"abstract":"This paper provides a tutorial for analyzing psychological research data with GAMLSS , an R package that uses the family of generalized additive models for location, scale, and shape. These models extend the capacities of traditional parametric and non-parametric tools that primarily rely on the first moment of the statistical distribution. When psychological data fails the assumption of homoscedasticity, the GAMLSS approach might yield less biased estimates while offering more insights about the data when considering sources of heteroscedasticity. The supplemental material and data help newcomers understand the implementation of this approach in a straightforward step-by-step procedure.","PeriodicalId":93055,"journal":{"name":"The quantitative methods for psychology","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quantitative methods for psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20982/tqmp.19.4.p333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a tutorial for analyzing psychological research data with GAMLSS , an R package that uses the family of generalized additive models for location, scale, and shape. These models extend the capacities of traditional parametric and non-parametric tools that primarily rely on the first moment of the statistical distribution. When psychological data fails the assumption of homoscedasticity, the GAMLSS approach might yield less biased estimates while offering more insights about the data when considering sources of heteroscedasticity. The supplemental material and data help newcomers understand the implementation of this approach in a straightforward step-by-step procedure.
评估心理数据中潜在的异方差性:GAMLSS 方法
本文提供了一个使用GAMLSS分析心理学研究数据的教程,GAMLSS是一个R包,使用一系列广义的附加模型来定位、规模和形状。这些模型扩展了传统参数和非参数工具的能力,这些工具主要依赖于统计分布的第一时刻。当心理数据不符合异方差假设时,GAMLSS方法可能产生较少的偏差估计,同时在考虑异方差来源时提供更多关于数据的见解。补充材料和数据帮助新手以直接的一步一步的过程理解这种方法的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信