Alaa Atef, Mostafa M. Abo Elsoud, H. Elkhouly, N. Sidkey
{"title":"Surfactin production from Bacillus cereus AHMNAZ1 and its potential applications","authors":"Alaa Atef, Mostafa M. Abo Elsoud, H. Elkhouly, N. Sidkey","doi":"10.3233/jcb-230122","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Biosurfactants are surfactants derived from several types of microorganisms such as bacteria, yeasts and fungi as membrane components or secondary metabolites. OBJECTIVE: To increase BS productivity as a biocompatible, low-toxic substitute for chemical surfactants employed in modern industry and the huge variety of applications they are used in. METHODS: Different media were used in isolation of the biosurfactant BS producers. The most potent bacterial isolate was analysed by 16S-rRNA. Plackett Burman and Box-Behnken Designs were used for optimization conditions. BS was purified by and characterized. RESULTS: Only one strain demonstrated great BS productivity, excellent emulsifying capability (54.5±0.1%) and oil spreading activity which analysed as Bacillus cereus AHMNAZ1 with accession number OP714421.1. The BS was lipopeptide in nature, identified as a surfactin which was stable and has Critical Micelle Concentration of 60 mg/L. Isolated surfactin showed excellent activity against Colon Carcinoma and Breast Carcinoma cell lines and can be used as antimicrobial agent. CONCLUSION: The study found a cheaper way of creating biosurfactants from agro-industrial wastes, delivering a twofold benefit of lowering environmental pollution and manufacturing useful biotechnological products (biosurfactants) with high activity and thermostability. Moreover, it can be used for the bioremediation of oil-polluted soils and in medical fields.","PeriodicalId":15286,"journal":{"name":"Journal of Cellular Biotechnology","volume":"101 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcb-230122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND: Biosurfactants are surfactants derived from several types of microorganisms such as bacteria, yeasts and fungi as membrane components or secondary metabolites. OBJECTIVE: To increase BS productivity as a biocompatible, low-toxic substitute for chemical surfactants employed in modern industry and the huge variety of applications they are used in. METHODS: Different media were used in isolation of the biosurfactant BS producers. The most potent bacterial isolate was analysed by 16S-rRNA. Plackett Burman and Box-Behnken Designs were used for optimization conditions. BS was purified by and characterized. RESULTS: Only one strain demonstrated great BS productivity, excellent emulsifying capability (54.5±0.1%) and oil spreading activity which analysed as Bacillus cereus AHMNAZ1 with accession number OP714421.1. The BS was lipopeptide in nature, identified as a surfactin which was stable and has Critical Micelle Concentration of 60 mg/L. Isolated surfactin showed excellent activity against Colon Carcinoma and Breast Carcinoma cell lines and can be used as antimicrobial agent. CONCLUSION: The study found a cheaper way of creating biosurfactants from agro-industrial wastes, delivering a twofold benefit of lowering environmental pollution and manufacturing useful biotechnological products (biosurfactants) with high activity and thermostability. Moreover, it can be used for the bioremediation of oil-polluted soils and in medical fields.