Carlos Díaz-Uribe, Jarith Ortiz, Freider Duran, W. Vallejo, Jayson Fals
{"title":"Methyl Orange Adsorption on Biochar Obtained from Prosopis juliflora Waste: Thermodynamic and Kinetic Study","authors":"Carlos Díaz-Uribe, Jarith Ortiz, Freider Duran, W. Vallejo, Jayson Fals","doi":"10.3390/chemengineering7060114","DOIUrl":null,"url":null,"abstract":"In the information contained herein, we fabricated biochar by means of a pyrolysis process; it used Prosopis juliflora waste (PJW) as a biomass source. The physical and chemical material characterization was carried out through FTIR, thermogravimetric, BET-N2 isotherm, and SEM-EDX assays. We studied the methylene orange (MO) adsorption onto PWJ biochar. The PJW biochar displayed a maximum percentage of MO removal of 64%. The results of the adsorption study indicated that Temkin isotherm was suitable to describe the MO adsorption process on PJW biochar; it suggests that the MO adsorption on PJW biochar could be a multi-layer adsorption process. Results showed that the pseudo-second-order model was accurate in demonstrating the MO adsorption on PJW (k2 = 0.295 g mg−1min−1; qe = 8.31 mg g−1). Furthermore, the results made known that the MO removal by PJW biochar was endothermic (ΔH = 12.7 kJ/mol) and a spontaneous process (ΔG = −0.954 kJ/mol). The reusability test disclosed that after four consecutive adsorption/desorption cycles, the PWJ biochar reduced its MO removal by only 4.3%.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":"112 41","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7060114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the information contained herein, we fabricated biochar by means of a pyrolysis process; it used Prosopis juliflora waste (PJW) as a biomass source. The physical and chemical material characterization was carried out through FTIR, thermogravimetric, BET-N2 isotherm, and SEM-EDX assays. We studied the methylene orange (MO) adsorption onto PWJ biochar. The PJW biochar displayed a maximum percentage of MO removal of 64%. The results of the adsorption study indicated that Temkin isotherm was suitable to describe the MO adsorption process on PJW biochar; it suggests that the MO adsorption on PJW biochar could be a multi-layer adsorption process. Results showed that the pseudo-second-order model was accurate in demonstrating the MO adsorption on PJW (k2 = 0.295 g mg−1min−1; qe = 8.31 mg g−1). Furthermore, the results made known that the MO removal by PJW biochar was endothermic (ΔH = 12.7 kJ/mol) and a spontaneous process (ΔG = −0.954 kJ/mol). The reusability test disclosed that after four consecutive adsorption/desorption cycles, the PWJ biochar reduced its MO removal by only 4.3%.