L1 adaptive control design for the rigid body launch vehicle

Q2 Engineering
Naji Anees Muqdad Naji, Adrian Stoica
{"title":"L1 adaptive control design for the rigid body launch vehicle","authors":"Naji Anees Muqdad Naji, Adrian Stoica","doi":"10.13111/2066-8201.2023.15.4.16","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of an L1-adaptive controller to improve the performance of the Vega launch vehicle because the classical controller does not guarantee stability and tracking of the system in the transient. The L1-AC ensures uniformly bounded transient and steady-state tracking for both systems’ signals, input, and output. In this paper, we used the equations of the adaptation and the L1-norm with two filters, the first one is first-order order and the second filter is third-order, we used the large adaptive gain with the first filter, also used the low adaptive gain with the second filter, and after the analysis the result numerically we found the lambda with the first filter less than 1 and the lambda with second filter larger than lambda with the first filter. The L1 adaptive controller can generate a stable system response to track the control input and the system output, both in transient and steady-state because we selected the adaptive gain large with minimize lambda. It is noted that the system response for the L1 adaptive control configuration with the first filter, as compared with the system response with the second filter, has much better performances, both from the point of view of the overshoot and rise time.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2023.15.4.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the use of an L1-adaptive controller to improve the performance of the Vega launch vehicle because the classical controller does not guarantee stability and tracking of the system in the transient. The L1-AC ensures uniformly bounded transient and steady-state tracking for both systems’ signals, input, and output. In this paper, we used the equations of the adaptation and the L1-norm with two filters, the first one is first-order order and the second filter is third-order, we used the large adaptive gain with the first filter, also used the low adaptive gain with the second filter, and after the analysis the result numerically we found the lambda with the first filter less than 1 and the lambda with second filter larger than lambda with the first filter. The L1 adaptive controller can generate a stable system response to track the control input and the system output, both in transient and steady-state because we selected the adaptive gain large with minimize lambda. It is noted that the system response for the L1 adaptive control configuration with the first filter, as compared with the system response with the second filter, has much better performances, both from the point of view of the overshoot and rise time.
刚体运载火箭的 L1 自适应控制设计
针对经典控制器不能保证系统在瞬态状态下的稳定性和跟踪性的问题,研究了采用l1自适应控制器来改善织女星运载火箭的性能。L1-AC确保了系统信号、输入和输出的均匀有界瞬态和稳态跟踪。在本文中,我们使用了两个滤波器的自适应方程和l1范数,第一阶滤波器为一阶滤波器,第二阶滤波器为三阶滤波器,我们对第一阶滤波器使用了大的自适应增益,对第二阶滤波器也使用了小的自适应增益,通过数值分析得到了第一阶滤波器的λ小于1,第二阶滤波器的λ大于第一阶滤波器的λ。L1自适应控制器可以产生稳定的系统响应来跟踪暂态和稳态的控制输入和系统输出,因为我们选择了具有最小lambda的自适应增益大。值得注意的是,从超调量和上升时间的角度来看,与使用第二个滤波器的系统响应相比,使用第一个滤波器的L1自适应控制配置的系统响应具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
INCAS Bulletin
INCAS Bulletin Engineering-Aerospace Engineering
自引率
0.00%
发文量
50
审稿时长
8 weeks
期刊介绍: INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信