{"title":"Joint design and simulation of GOX-GCH4 combustion and cooling in an experimental water-cooled subscale rocket engine","authors":"Alexandru Mereu, D. Isvoranu","doi":"10.13111/2066-8201.2023.15.4.13","DOIUrl":null,"url":null,"abstract":"This paper presents the authors’ most recent research regarding the feasibility of cooling a 1 kN scaled-down experimental rocket engine, running on gaseous oxygen and gaseous methane, for a ground test. The cooling segment of a rocket engine has always been a delicate problem, increasing the development time and costs of development. Since a series of problems can occur during the first ignition of a rocket engine prototype, removing as many potential issues from the initial test, such as using liquid methane for the cooling system, could result in a more stable experiment. Using water as the cooling agent can contribute to a more accelerated TRL increase of the engine’s subcomponents while reducing the risks taken for a whole assembly test. Thus, the combustion chamber, nozzle, and injector can be tested separately from the final cooling method, which can be added subsequently. In the present work, both a steady and transient CFD combustion simulation of a multicomponent compound, consisting of gaseous oxygen and gaseous methane was conducted in the combustion chamber of a small-scale rocket engine. The simulation is based on PDF-flamelet approach for the oxygen and methane combustion, along with real gas equations for the cooling agent.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":"122 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2023.15.4.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the authors’ most recent research regarding the feasibility of cooling a 1 kN scaled-down experimental rocket engine, running on gaseous oxygen and gaseous methane, for a ground test. The cooling segment of a rocket engine has always been a delicate problem, increasing the development time and costs of development. Since a series of problems can occur during the first ignition of a rocket engine prototype, removing as many potential issues from the initial test, such as using liquid methane for the cooling system, could result in a more stable experiment. Using water as the cooling agent can contribute to a more accelerated TRL increase of the engine’s subcomponents while reducing the risks taken for a whole assembly test. Thus, the combustion chamber, nozzle, and injector can be tested separately from the final cooling method, which can be added subsequently. In the present work, both a steady and transient CFD combustion simulation of a multicomponent compound, consisting of gaseous oxygen and gaseous methane was conducted in the combustion chamber of a small-scale rocket engine. The simulation is based on PDF-flamelet approach for the oxygen and methane combustion, along with real gas equations for the cooling agent.
期刊介绍:
INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.