Mapping the Evolution of Intrusion Detection in Big Data: A Bibliometric Analysis

M. Yaseen, A. S. Albahri
{"title":"Mapping the Evolution of Intrusion Detection in Big Data: A Bibliometric Analysis","authors":"M. Yaseen, A. S. Albahri","doi":"10.58496/mjbd/2023/018","DOIUrl":null,"url":null,"abstract":"This study provides a comprehensive analysis of the dynamic amalgamation of intrusion detection and big data, revealing trends and patterns within cybersecurity research. The investigation reveals a notable surge in scholarly output from 2018 onwards, reflecting heightened interest and exploration within the field. Dominant themes such as \"intrusion detection,\" \"big data,\" and \"machine learning\" underscore the integration of security concerns with advanced technologies. Geographical influences showcase diverse contributions, with varying citation impacts from countries like India, China, and Saudi Arabia. Author contributions reveal a balance between prolific authors and impactful contributions from authors with fewer publications. Recommendations include fostering interdisciplinary collaborations, integrating advanced computational methods, and conducting longitudinal studies to gauge sustained impacts. This research underscores collaboration dynamics, thematic evolution, and global influences as pivotal facets within the realm of intrusion detection and big data, guiding future research to fortify digital security in an ever-evolving technological landscape.","PeriodicalId":325612,"journal":{"name":"Mesopotamian Journal of Big Data","volume":"92 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mesopotamian Journal of Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58496/mjbd/2023/018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a comprehensive analysis of the dynamic amalgamation of intrusion detection and big data, revealing trends and patterns within cybersecurity research. The investigation reveals a notable surge in scholarly output from 2018 onwards, reflecting heightened interest and exploration within the field. Dominant themes such as "intrusion detection," "big data," and "machine learning" underscore the integration of security concerns with advanced technologies. Geographical influences showcase diverse contributions, with varying citation impacts from countries like India, China, and Saudi Arabia. Author contributions reveal a balance between prolific authors and impactful contributions from authors with fewer publications. Recommendations include fostering interdisciplinary collaborations, integrating advanced computational methods, and conducting longitudinal studies to gauge sustained impacts. This research underscores collaboration dynamics, thematic evolution, and global influences as pivotal facets within the realm of intrusion detection and big data, guiding future research to fortify digital security in an ever-evolving technological landscape.
绘制大数据入侵检测的演变图:文献计量分析
本研究对入侵检测和大数据的动态融合进行了全面分析,揭示了网络安全研究的趋势和模式。调查显示,自2018年以来,学术产出显著增加,反映出该领域的兴趣和探索程度提高。“入侵检测”、“大数据”和“机器学习”等主要主题强调了安全问题与先进技术的融合。地理影响表现出不同的贡献,来自印度、中国和沙特阿拉伯等国家的引用影响各不相同。作者贡献揭示了高产作者和发表较少的作者的有影响力的贡献之间的平衡。建议包括促进跨学科合作、整合先进的计算方法和开展纵向研究以评估持续影响。本研究强调了协作动态、主题演变和全球影响是入侵检测和大数据领域的关键方面,指导未来研究在不断发展的技术环境中加强数字安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信