Helen Papadaki, E. Kaselouris, M. Bakarezos, M. Tatarakis, N. Papadogiannis, V. Dimitriou
{"title":"A Computational Study of Solid Si Target Dynamics under ns Pulsed Laser Irradiation from Elastic to Melting Regime","authors":"Helen Papadaki, E. Kaselouris, M. Bakarezos, M. Tatarakis, N. Papadogiannis, V. Dimitriou","doi":"10.3390/computation11120240","DOIUrl":null,"url":null,"abstract":"The dynamic behavior of solid Si targets irradiated by nanosecond laser pulses is computationally studied with transient, thermοmechanical three-dimensional finite element method simulations. The dynamic phase changes of the target and the generation and propagation of surface acoustic waves around the laser focal spot are provided by a finite element model of a very fine uniformly structured mesh, able to provide high-resolution results in short and long spatiotemporal scales. The dynamic changes in the Si material properties until the melting regime are considered, and the simulation results provide a detailed description of the irradiated area response, accompanied by the dynamics of the generation and propagation of ultrasonic waves. The new findings indicate that, due to the low thermal expansion coefficient and the high penetration depth of Si, the amplitude of the generated SAW is small, and the time and distance needed for the ultrasound to be generated is higher compared to dense metals. Additionally, in the melting regime, the development of high nonlinear thermal stresses leads to the generation and formation of an irregular ultrasound. Understanding the interaction between nanosecond lasers and Si is pivotal for advancing a wide range of technologies related to material processing and characterization.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"92 23","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11120240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic behavior of solid Si targets irradiated by nanosecond laser pulses is computationally studied with transient, thermοmechanical three-dimensional finite element method simulations. The dynamic phase changes of the target and the generation and propagation of surface acoustic waves around the laser focal spot are provided by a finite element model of a very fine uniformly structured mesh, able to provide high-resolution results in short and long spatiotemporal scales. The dynamic changes in the Si material properties until the melting regime are considered, and the simulation results provide a detailed description of the irradiated area response, accompanied by the dynamics of the generation and propagation of ultrasonic waves. The new findings indicate that, due to the low thermal expansion coefficient and the high penetration depth of Si, the amplitude of the generated SAW is small, and the time and distance needed for the ultrasound to be generated is higher compared to dense metals. Additionally, in the melting regime, the development of high nonlinear thermal stresses leads to the generation and formation of an irregular ultrasound. Understanding the interaction between nanosecond lasers and Si is pivotal for advancing a wide range of technologies related to material processing and characterization.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.