Fernanda Silva Carvalho, Maria Gabriela Meirelles, Diamantino Henriques, João Porteiro, Patrícia Navarro, H. Vasconcelos
{"title":"Climate Change and Extreme Events in Northeast Atlantic and Azores Islands Region","authors":"Fernanda Silva Carvalho, Maria Gabriela Meirelles, Diamantino Henriques, João Porteiro, Patrícia Navarro, H. Vasconcelos","doi":"10.3390/cli11120238","DOIUrl":null,"url":null,"abstract":"In small island regions, the influence of climate change assumes particular relevance. In the Azores archipelago, made up of nine islands, the geographical circumstances, oceanic condition, territorial dispersion, land use model and other physiographic constraints reinforce and enhance the vulnerability of the islands to changes in current weather patterns. Coupled Model Intercomparison Phase 6 (CMIP6) projections are used for the northeast Atlantic region to evaluate daily extreme climate events in large scale for the Azores region. Results shows changes in the annual maximum number of consecutive dry days, the annual number of wet days, and especially in the annual number of tropical nights. Despite limitations due to the lack of spatial detail, the large-scale framework suggests changes that may be enhanced by topography, particularly with respect to precipitation. The conclusions point to the need to establish standard rules in the processes of design, reviewing and/or amending territorial management instruments at the municipal scale in the Autonomous Region of the Azores, with the goal of adapting to a different climate from the recent past.","PeriodicalId":37615,"journal":{"name":"Climate","volume":"72 23","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11120238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In small island regions, the influence of climate change assumes particular relevance. In the Azores archipelago, made up of nine islands, the geographical circumstances, oceanic condition, territorial dispersion, land use model and other physiographic constraints reinforce and enhance the vulnerability of the islands to changes in current weather patterns. Coupled Model Intercomparison Phase 6 (CMIP6) projections are used for the northeast Atlantic region to evaluate daily extreme climate events in large scale for the Azores region. Results shows changes in the annual maximum number of consecutive dry days, the annual number of wet days, and especially in the annual number of tropical nights. Despite limitations due to the lack of spatial detail, the large-scale framework suggests changes that may be enhanced by topography, particularly with respect to precipitation. The conclusions point to the need to establish standard rules in the processes of design, reviewing and/or amending territorial management instruments at the municipal scale in the Autonomous Region of the Azores, with the goal of adapting to a different climate from the recent past.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.