Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo-Ning Ren, Ligang Liu
{"title":"DiffFR: Differentiable SPH-Based Fluid-Rigid Coupling for Rigid Body Control","authors":"Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo-Ning Ren, Ligang Liu","doi":"10.1145/3618318","DOIUrl":null,"url":null,"abstract":"Differentiable physics simulation has shown its efficacy in inverse design problems. Given the pervasiveness of the diverse interactions between fluids and solids in life, a differentiable simulator for the inverse design of the motion of rigid objects in two-way fluid-rigid coupling is also demanded. There are two main challenges to develop a differentiable two-way fluid-solid coupling simulator for rigid body control tasks: the ubiquitous, discontinuous contacts in fluid-solid interactions, and the high computational cost of gradient formulation due to the large number of degrees of freedom (DoF) of fluid dynamics. In this work, we propose a novel differentiable SPH-based two-way fluid-rigid coupling simulator to address these challenges. Our purpose is to provide a differentiable simulator for SPH which incorporates a unified representation for both fluids and solids using particles. However, naively differentiating the forward simulation of the particle system encounters gradient explosion issues. We investigate the instability in differentiating the SPH-based fluid-rigid coupling simulator and present a feasible gradient computation scheme to address its differentiability. In addition, we also propose an efficient method to compute the gradient of fluid-rigid coupling without incurring the high computational cost of differentiating the entire high-DoF fluid system. We show the efficacy, scalability, and extensibility of our method in various challenging rigid body control tasks with diverse fluid-rigid interactions and multi-rigid contacts, achieving up to an order of magnitude speedup in optimization compared to baseline methods in experiments.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"22 4","pages":"1 - 17"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Differentiable physics simulation has shown its efficacy in inverse design problems. Given the pervasiveness of the diverse interactions between fluids and solids in life, a differentiable simulator for the inverse design of the motion of rigid objects in two-way fluid-rigid coupling is also demanded. There are two main challenges to develop a differentiable two-way fluid-solid coupling simulator for rigid body control tasks: the ubiquitous, discontinuous contacts in fluid-solid interactions, and the high computational cost of gradient formulation due to the large number of degrees of freedom (DoF) of fluid dynamics. In this work, we propose a novel differentiable SPH-based two-way fluid-rigid coupling simulator to address these challenges. Our purpose is to provide a differentiable simulator for SPH which incorporates a unified representation for both fluids and solids using particles. However, naively differentiating the forward simulation of the particle system encounters gradient explosion issues. We investigate the instability in differentiating the SPH-based fluid-rigid coupling simulator and present a feasible gradient computation scheme to address its differentiability. In addition, we also propose an efficient method to compute the gradient of fluid-rigid coupling without incurring the high computational cost of differentiating the entire high-DoF fluid system. We show the efficacy, scalability, and extensibility of our method in various challenging rigid body control tasks with diverse fluid-rigid interactions and multi-rigid contacts, achieving up to an order of magnitude speedup in optimization compared to baseline methods in experiments.